Multiplication modules and a theorem of P. F. Smith

Majid M. Ali, David J. Smith

Research output: Contribution to journalArticle

Abstract

P. F. Smith [7, Theorem 8] gave sufficient conditions on a finite set of modules for their sum and intersection to be multiplication modules. We give sufficient conditions on an arbitrary set of multiplication modules for the intersection to be a multiplication module. We generalize Smith's theorem, and we prove conditions on sums and intersections of sets of modules sufficient for them to be multiplication modules.

Original languageEnglish
Pages (from-to)127-135
Number of pages9
JournalPeriodica Mathematica Hungarica
Volume44
Issue number2
Publication statusPublished - 2002

Fingerprint

Multiplication Module
Theorem
Intersection
Intersection of sets
Module
Sufficient Conditions
Finite Set
Sufficient
Generalise
Arbitrary

Keywords

  • Multiplication ideal
  • Multiplication module

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Multiplication modules and a theorem of P. F. Smith. / Ali, Majid M.; Smith, David J.

In: Periodica Mathematica Hungarica, Vol. 44, No. 2, 2002, p. 127-135.

Research output: Contribution to journalArticle

Ali, Majid M. ; Smith, David J. / Multiplication modules and a theorem of P. F. Smith. In: Periodica Mathematica Hungarica. 2002 ; Vol. 44, No. 2. pp. 127-135.
@article{17eeab94e05d4d29ac3742a29d59adba,
title = "Multiplication modules and a theorem of P. F. Smith",
abstract = "P. F. Smith [7, Theorem 8] gave sufficient conditions on a finite set of modules for their sum and intersection to be multiplication modules. We give sufficient conditions on an arbitrary set of multiplication modules for the intersection to be a multiplication module. We generalize Smith's theorem, and we prove conditions on sums and intersections of sets of modules sufficient for them to be multiplication modules.",
keywords = "Multiplication ideal, Multiplication module",
author = "Ali, {Majid M.} and Smith, {David J.}",
year = "2002",
language = "English",
volume = "44",
pages = "127--135",
journal = "Periodica Mathematica Hungarica",
issn = "0031-5303",
publisher = "Springer Netherlands",
number = "2",

}

TY - JOUR

T1 - Multiplication modules and a theorem of P. F. Smith

AU - Ali, Majid M.

AU - Smith, David J.

PY - 2002

Y1 - 2002

N2 - P. F. Smith [7, Theorem 8] gave sufficient conditions on a finite set of modules for their sum and intersection to be multiplication modules. We give sufficient conditions on an arbitrary set of multiplication modules for the intersection to be a multiplication module. We generalize Smith's theorem, and we prove conditions on sums and intersections of sets of modules sufficient for them to be multiplication modules.

AB - P. F. Smith [7, Theorem 8] gave sufficient conditions on a finite set of modules for their sum and intersection to be multiplication modules. We give sufficient conditions on an arbitrary set of multiplication modules for the intersection to be a multiplication module. We generalize Smith's theorem, and we prove conditions on sums and intersections of sets of modules sufficient for them to be multiplication modules.

KW - Multiplication ideal

KW - Multiplication module

UR - http://www.scopus.com/inward/record.url?scp=52649117592&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=52649117592&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:52649117592

VL - 44

SP - 127

EP - 135

JO - Periodica Mathematica Hungarica

JF - Periodica Mathematica Hungarica

SN - 0031-5303

IS - 2

ER -