Minimization of CaSO4 deposition through surface modification

A. Al-Janabi, M. R. Malayeri, H. Müller-Steinhagen

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Among the various fouling mitigation strategies, surface modification is gaining increased attention due to its environmental compatibility, i.e., reduced consumption of potentially harmful fouling inhibitors. One approach is to decrease the surface energy, which could give rise to lower adhesive strength of deposited crystals on surfaces. The present work aims at investigating the influence of various novel coatings on the interaction energies between CaSO4 deposits and modified surfaces. Investigated coatings are (i) solvent based, (ii) water based, and (iii) electroless Ni-P-BN. A systematic set of fouling runs has been conducted under similar operating conditions for all coatings. The experimental results show that the deposition process is strongly affected by altering the surface properties, particularly the electron donor component. Furthermore, the contribution of the Lifshitz-van der Waals energy to the total interaction energy is marginal in comparison to that of the Lewis acid-base energy under the range of operating conditions in this study. Overall, in terms of reduced stickiness of deposits onto the surface, the solvent-based coatings performed best.

Original languageEnglish
Pages (from-to)291-299
Number of pages9
JournalHeat Transfer Engineering
Volume32
Issue number3-4
DOIs
Publication statusPublished - Mar 2011
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Minimization of CaSO4 deposition through surface modification'. Together they form a unique fingerprint.

Cite this