Abstract
We prove that the G-invariant orbital measures supported on adjoint orbits in the Lie algebra of a classical, compact, connected, simple Lie group satisfy a smoothness dichotomy: Either μk is singular to Lebesgue measure or μk ∈ L2. The minimum k for which μk ∈ L2 is specified and is also the minimum k such that the k-fold sum of the orbit has positive measure.
Original language | English |
---|---|
Pages (from-to) | 91-124 |
Number of pages | 34 |
Journal | Mathematische Zeitschrift |
Volume | 262 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2009 |
Keywords
- Adjoint orbit
- Classical Lie algebra
- Compact Lie group
- Conjugacy class
- Orbital measure
ASJC Scopus subject areas
- Mathematics(all)