Looking for compensation at multiple scales in a wetland bird community

Frédéric Barraquand*, Coralie Picoche, Christelle Aluome, Laure Carassou, Claude Feigné

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Compensatory dynamics, during which community composition shifts despite a near-constant total community size, are usually rare: Synchronous dynamics prevail in natural communities. This is a puzzle for ecologists, because of the key role of compensation in explaining the relation between biodiversity and ecosystem functioning. However, most studies so far have considered compensation in either plants or planktonic organisms, so that evidence for the generality of such synchrony is limited. Here, we extend analyses of community-level synchrony to wetland birds. We analyze a 35-year monthly survey of a community where we suspected that compensation might occur due to potential competition and changes in water levels, favoring birds with different habitat preferences. We perform both year-to-year analyses by season, using a compensation/synchrony index, and multiscale analyses using a wavelet-based measure, which allows for both scale- and time-dependence. We analyze synchrony both within and between guilds, with guilds defined either as tightknit phylogenetic groups or as larger functional groups. We find that abundance and biomass compensation are rare, likely due to the synchronizing influence of climate (and other drivers) on birds, even after considering several temporal scales of covariation (during either cold or warm seasons, above or below the annual scale). Negative covariation in abundance at the guild or community level did only appear at the scale of a few months or several years. We also found that synchrony varies with taxonomic and functional scale: The rare cases where compensation appeared consistently in year-to-year analyses were between rather than within functional groups. Our results suggest that abundance compensation may have more potential to emerge between broad functional groups rather than between species, and at relatively long temporal scales (multiple years for vertebrates), above that of the dominant synchronizing driver.

Original languageEnglish
Article numbere8876
JournalEcology and Evolution
Volume12
Issue number6
DOIs
Publication statusPublished - Jun 2022
Externally publishedYes

Keywords

  • biodiversity
  • birds
  • compensation
  • synchrony
  • time series
  • wavelets

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Nature and Landscape Conservation

Cite this