Local magnetic moment and hyperfine field in hydrogenated iron and iron-vanadium alloy

M. E. Elzain, A. A. Yousif

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The local magnetic moment Μ and hyperfine field Bhf at Fe and V sites in hydrogenated iron and iron-vanadium were calculated using the discrete variational method. The variations in Μ and Bhf with H occupation of the octahedral (O) site were considered. It was found that when H occupies the O site neighbouring an Fe atom, both local moment and hyperfine field at this atom decrease linearly with increasing number of H atoms. The rate of decrease is larger for Fe in iron as compared to iron in vanadium. On the other hand, when H resides at an O site next neighbouring an Fe atom, whether in iron metal or in iron-vanadium, the Fe magnetic moment increases slowly, while the hyperfine field remains almost constant. The V moment in iron, which is negative (∼-0.83 ΜB), becomes less negative (∼-0.30 ΜB) as H occupies the neighboring O sites, whereas slight changes occur (∼-0.88 ΜB) when H is at the next neighbouring O site. The net effect of H on Fe in iron is to decrease the average magnetic moment at a rate of ∼1.2 ΜB per H/Fe for low H content. On the other hand, the average Fe moment in an iron-vanadium alloy increases if H resides at O sites which are immediate neigbours of V and next neighbours of Fe. This may explain the development of a magnetic state on hydrogenation of Fe-V alloys, which is exhibited by the specific heat and susceptibility measurements. The changes in the isomer shift were found to agree with experimental trends.

Original languageEnglish
Pages (from-to)1879-1884
Number of pages6
JournalHyperfine Interactions
Volume94
Issue number1
DOIs
Publication statusPublished - Dec 1994

Fingerprint

vanadium alloys
Vanadium alloys
iron alloys
Iron alloys
Magnetic moments
Iron
magnetic moments
iron
Vanadium
vanadium
Atoms
moments
atoms
Isomers
occupation
Hydrogenation
hydrogenation
Specific heat
heat measurement
isomers

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Nuclear and High Energy Physics
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Electronic, Optical and Magnetic Materials

Cite this

Local magnetic moment and hyperfine field in hydrogenated iron and iron-vanadium alloy. / Elzain, M. E.; Yousif, A. A.

In: Hyperfine Interactions, Vol. 94, No. 1, 12.1994, p. 1879-1884.

Research output: Contribution to journalArticle

@article{f630ab40dab84c949647e2043a036cde,
title = "Local magnetic moment and hyperfine field in hydrogenated iron and iron-vanadium alloy",
abstract = "The local magnetic moment Μ and hyperfine field Bhf at Fe and V sites in hydrogenated iron and iron-vanadium were calculated using the discrete variational method. The variations in Μ and Bhf with H occupation of the octahedral (O) site were considered. It was found that when H occupies the O site neighbouring an Fe atom, both local moment and hyperfine field at this atom decrease linearly with increasing number of H atoms. The rate of decrease is larger for Fe in iron as compared to iron in vanadium. On the other hand, when H resides at an O site next neighbouring an Fe atom, whether in iron metal or in iron-vanadium, the Fe magnetic moment increases slowly, while the hyperfine field remains almost constant. The V moment in iron, which is negative (∼-0.83 ΜB), becomes less negative (∼-0.30 ΜB) as H occupies the neighboring O sites, whereas slight changes occur (∼-0.88 ΜB) when H is at the next neighbouring O site. The net effect of H on Fe in iron is to decrease the average magnetic moment at a rate of ∼1.2 ΜB per H/Fe for low H content. On the other hand, the average Fe moment in an iron-vanadium alloy increases if H resides at O sites which are immediate neigbours of V and next neighbours of Fe. This may explain the development of a magnetic state on hydrogenation of Fe-V alloys, which is exhibited by the specific heat and susceptibility measurements. The changes in the isomer shift were found to agree with experimental trends.",
author = "Elzain, {M. E.} and Yousif, {A. A.}",
year = "1994",
month = "12",
doi = "10.1007/BF02063711",
language = "English",
volume = "94",
pages = "1879--1884",
journal = "Hyperfine Interaction",
issn = "0304-3843",
publisher = "Springer Netherlands",
number = "1",

}

TY - JOUR

T1 - Local magnetic moment and hyperfine field in hydrogenated iron and iron-vanadium alloy

AU - Elzain, M. E.

AU - Yousif, A. A.

PY - 1994/12

Y1 - 1994/12

N2 - The local magnetic moment Μ and hyperfine field Bhf at Fe and V sites in hydrogenated iron and iron-vanadium were calculated using the discrete variational method. The variations in Μ and Bhf with H occupation of the octahedral (O) site were considered. It was found that when H occupies the O site neighbouring an Fe atom, both local moment and hyperfine field at this atom decrease linearly with increasing number of H atoms. The rate of decrease is larger for Fe in iron as compared to iron in vanadium. On the other hand, when H resides at an O site next neighbouring an Fe atom, whether in iron metal or in iron-vanadium, the Fe magnetic moment increases slowly, while the hyperfine field remains almost constant. The V moment in iron, which is negative (∼-0.83 ΜB), becomes less negative (∼-0.30 ΜB) as H occupies the neighboring O sites, whereas slight changes occur (∼-0.88 ΜB) when H is at the next neighbouring O site. The net effect of H on Fe in iron is to decrease the average magnetic moment at a rate of ∼1.2 ΜB per H/Fe for low H content. On the other hand, the average Fe moment in an iron-vanadium alloy increases if H resides at O sites which are immediate neigbours of V and next neighbours of Fe. This may explain the development of a magnetic state on hydrogenation of Fe-V alloys, which is exhibited by the specific heat and susceptibility measurements. The changes in the isomer shift were found to agree with experimental trends.

AB - The local magnetic moment Μ and hyperfine field Bhf at Fe and V sites in hydrogenated iron and iron-vanadium were calculated using the discrete variational method. The variations in Μ and Bhf with H occupation of the octahedral (O) site were considered. It was found that when H occupies the O site neighbouring an Fe atom, both local moment and hyperfine field at this atom decrease linearly with increasing number of H atoms. The rate of decrease is larger for Fe in iron as compared to iron in vanadium. On the other hand, when H resides at an O site next neighbouring an Fe atom, whether in iron metal or in iron-vanadium, the Fe magnetic moment increases slowly, while the hyperfine field remains almost constant. The V moment in iron, which is negative (∼-0.83 ΜB), becomes less negative (∼-0.30 ΜB) as H occupies the neighboring O sites, whereas slight changes occur (∼-0.88 ΜB) when H is at the next neighbouring O site. The net effect of H on Fe in iron is to decrease the average magnetic moment at a rate of ∼1.2 ΜB per H/Fe for low H content. On the other hand, the average Fe moment in an iron-vanadium alloy increases if H resides at O sites which are immediate neigbours of V and next neighbours of Fe. This may explain the development of a magnetic state on hydrogenation of Fe-V alloys, which is exhibited by the specific heat and susceptibility measurements. The changes in the isomer shift were found to agree with experimental trends.

UR - http://www.scopus.com/inward/record.url?scp=0345090236&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0345090236&partnerID=8YFLogxK

U2 - 10.1007/BF02063711

DO - 10.1007/BF02063711

M3 - Article

VL - 94

SP - 1879

EP - 1884

JO - Hyperfine Interaction

JF - Hyperfine Interaction

SN - 0304-3843

IS - 1

ER -