Isoperimetric upper bounds for the eigenvalues of the Sturm-Liouville type

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We study the problem of maximizing the eigenvalues of the differential equation (q(x)y′)′ + λρ(x)y = 0 defined on a finite interval. The problem is solved by means of sufficient conditions of optimality.

Original languageEnglish
Pages (from-to)835-840
Number of pages6
JournalComptes Rendus de l'Academie des Sciences - Series I: Mathematics
Volume325
Issue number8
Publication statusPublished - Oct 1997

Fingerprint

Isoperimetric
Sturm-Liouville
Upper bound
Eigenvalue
Optimality
Differential equation
Interval
Sufficient Conditions

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

@article{8927e83de63443deb36f36950e0aa354,
title = "Isoperimetric upper bounds for the eigenvalues of the Sturm-Liouville type",
abstract = "We study the problem of maximizing the eigenvalues of the differential equation (q(x)y′)′ + λρ(x)y = 0 defined on a finite interval. The problem is solved by means of sufficient conditions of optimality.",
author = "Samir Karaa",
year = "1997",
month = "10",
language = "English",
volume = "325",
pages = "835--840",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "8",

}

TY - JOUR

T1 - Isoperimetric upper bounds for the eigenvalues of the Sturm-Liouville type

AU - Karaa, Samir

PY - 1997/10

Y1 - 1997/10

N2 - We study the problem of maximizing the eigenvalues of the differential equation (q(x)y′)′ + λρ(x)y = 0 defined on a finite interval. The problem is solved by means of sufficient conditions of optimality.

AB - We study the problem of maximizing the eigenvalues of the differential equation (q(x)y′)′ + λρ(x)y = 0 defined on a finite interval. The problem is solved by means of sufficient conditions of optimality.

UR - http://www.scopus.com/inward/record.url?scp=0031256853&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031256853&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0031256853

VL - 325

SP - 835

EP - 840

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 8

ER -