Interfacial transport properties between a strongly correlated transition metal oxide and a metal: Contact resistance in Fe3O 4/M(M=Cu,Au,Pt) nanostructures

A. A. Fursina, R. G S Sofin, I. V. Shvets, D. Natelson

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Multiterminal measurements have typically been employed to examine electronic properties of strongly correlated electronic materials such as transition metal oxides without the influence of contact effects. In contrast, in this work we investigate the interface properties of Fe3 O 4 with different metals, with the contact effects providing a window on the physics at work in the correlated oxide. Contact resistances are determined by means of four-terminal electrical measurements as a function of source voltage and temperature. Contact resistances vary systematically with the work function of the electrode metal, İ (M), M=Cu, Au, and Pt, with higher work function yielding lower contact resistance. This trend and the observation that contact resistances are directly proportional to the Fe3 O 4 resistivity are consistent with modeling the oxide as an effective p -type semiconductor with hopping transport. The jumps in contact resistance values at the bias-driven insulator-metal transition have a similar trend with (M), consistent with the transition mechanism of charge gap closure by electric field.

Original languageEnglish
Article number245112
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume82
Issue number24
DOIs
Publication statusPublished - 2010

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electronic, Optical and Magnetic Materials

Fingerprint Dive into the research topics of 'Interfacial transport properties between a strongly correlated transition metal oxide and a metal: Contact resistance in Fe3O 4/M(M=Cu,Au,Pt) nanostructures'. Together they form a unique fingerprint.

  • Cite this