Interaction of heavy metals with dehydrated carbon

Research output: Contribution to journalArticle

Abstract

Dehydrated carbon material was prepared from date palm leaflets via sulphuric acid treatment. The acid causes dehydration via the removal of water. In addition it causes oxidation to the dehydrated carbon surface. The carbon was tested for the removal of Pb2+, Zn2+, Cu2+, Co2+, Ag+, Pd2+ and Hg2+ from aqueous solution in terms of different pH, time and concentrations and temperature. Optimum pH was found to be in the range of 3-5 for the metals under investigation. Sorption of Pb2+, Zn2+, Cu2+, Co2+ was found fast, reaching equilibrium within ∼ 2 hr while the sorption of Ag+, Pd2+ and Hg2+ (nitrate and chloride media) was slow and required ∼80 hr to reach equilibrium. Activation energy, Ea, for the sorption of Pb2+, Zn2+, Cu2+, Co2+ was < 17 kJ/mol indicating a diffusion controlled ion exchange process, however, for Ag+, Pd2+ and Hg2+ sorption, Ea was > 40 kJ/mol indicating a chemically controlled process. Equilibrium sorption capacity was much higher for Ag+, Pd2+ and Hg2+ than for Pb2+, Zn2+, Cu2+, Co2+ with increased uptake, for both metals, by rising the temperature (25-45 °C). Scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy showed that Ag+ and Pd2+ were reduced to their respective elemental states. For Hg2+, reduction took place to elemental mercury from nitrate media and to Hg2Cl2 from the chloride media. However, no reduction processes were involved in the sorption of Pb2+, Zn2+, Cu2+, Co2+.

Original languageEnglish
Article number05004
JournalE3S Web of Conferences
Volume1
DOIs
Publication statusPublished - Apr 23 2013

Fingerprint

Heavy metals
Sorption
sorption
heavy metal
Carbon
carbon
Nitrates
chloride
nitrate
Acids
metal
Metals
Dehydration
dehydration
activation energy
sulfuric acid
Energy dispersive spectroscopy
aqueous solution
Activation energy
temperature

Keywords

  • Dehydrated carbon
  • Heavy metals
  • Reduction
  • Sorption

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)
  • Environmental Science(all)
  • Energy(all)

Cite this

Interaction of heavy metals with dehydrated carbon. / El-Shafey, E. I.

In: E3S Web of Conferences, Vol. 1, 05004, 23.04.2013.

Research output: Contribution to journalArticle

@article{0a8b49d3e5e349d498f13ba6d6d47810,
title = "Interaction of heavy metals with dehydrated carbon",
abstract = "Dehydrated carbon material was prepared from date palm leaflets via sulphuric acid treatment. The acid causes dehydration via the removal of water. In addition it causes oxidation to the dehydrated carbon surface. The carbon was tested for the removal of Pb2+, Zn2+, Cu2+, Co2+, Ag+, Pd2+ and Hg2+ from aqueous solution in terms of different pH, time and concentrations and temperature. Optimum pH was found to be in the range of 3-5 for the metals under investigation. Sorption of Pb2+, Zn2+, Cu2+, Co2+ was found fast, reaching equilibrium within ∼ 2 hr while the sorption of Ag+, Pd2+ and Hg2+ (nitrate and chloride media) was slow and required ∼80 hr to reach equilibrium. Activation energy, Ea, for the sorption of Pb2+, Zn2+, Cu2+, Co2+ was < 17 kJ/mol indicating a diffusion controlled ion exchange process, however, for Ag+, Pd2+ and Hg2+ sorption, Ea was > 40 kJ/mol indicating a chemically controlled process. Equilibrium sorption capacity was much higher for Ag+, Pd2+ and Hg2+ than for Pb2+, Zn2+, Cu2+, Co2+ with increased uptake, for both metals, by rising the temperature (25-45 °C). Scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy showed that Ag+ and Pd2+ were reduced to their respective elemental states. For Hg2+, reduction took place to elemental mercury from nitrate media and to Hg2Cl2 from the chloride media. However, no reduction processes were involved in the sorption of Pb2+, Zn2+, Cu2+, Co2+.",
keywords = "Dehydrated carbon, Heavy metals, Reduction, Sorption",
author = "El-Shafey, {E. I.}",
year = "2013",
month = "4",
day = "23",
doi = "10.1051/e3sconf/20130105004",
language = "English",
volume = "1",
journal = "E3S Web of Conferences",
issn = "2267-1242",
publisher = "EDP Sciences",

}

TY - JOUR

T1 - Interaction of heavy metals with dehydrated carbon

AU - El-Shafey, E. I.

PY - 2013/4/23

Y1 - 2013/4/23

N2 - Dehydrated carbon material was prepared from date palm leaflets via sulphuric acid treatment. The acid causes dehydration via the removal of water. In addition it causes oxidation to the dehydrated carbon surface. The carbon was tested for the removal of Pb2+, Zn2+, Cu2+, Co2+, Ag+, Pd2+ and Hg2+ from aqueous solution in terms of different pH, time and concentrations and temperature. Optimum pH was found to be in the range of 3-5 for the metals under investigation. Sorption of Pb2+, Zn2+, Cu2+, Co2+ was found fast, reaching equilibrium within ∼ 2 hr while the sorption of Ag+, Pd2+ and Hg2+ (nitrate and chloride media) was slow and required ∼80 hr to reach equilibrium. Activation energy, Ea, for the sorption of Pb2+, Zn2+, Cu2+, Co2+ was < 17 kJ/mol indicating a diffusion controlled ion exchange process, however, for Ag+, Pd2+ and Hg2+ sorption, Ea was > 40 kJ/mol indicating a chemically controlled process. Equilibrium sorption capacity was much higher for Ag+, Pd2+ and Hg2+ than for Pb2+, Zn2+, Cu2+, Co2+ with increased uptake, for both metals, by rising the temperature (25-45 °C). Scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy showed that Ag+ and Pd2+ were reduced to their respective elemental states. For Hg2+, reduction took place to elemental mercury from nitrate media and to Hg2Cl2 from the chloride media. However, no reduction processes were involved in the sorption of Pb2+, Zn2+, Cu2+, Co2+.

AB - Dehydrated carbon material was prepared from date palm leaflets via sulphuric acid treatment. The acid causes dehydration via the removal of water. In addition it causes oxidation to the dehydrated carbon surface. The carbon was tested for the removal of Pb2+, Zn2+, Cu2+, Co2+, Ag+, Pd2+ and Hg2+ from aqueous solution in terms of different pH, time and concentrations and temperature. Optimum pH was found to be in the range of 3-5 for the metals under investigation. Sorption of Pb2+, Zn2+, Cu2+, Co2+ was found fast, reaching equilibrium within ∼ 2 hr while the sorption of Ag+, Pd2+ and Hg2+ (nitrate and chloride media) was slow and required ∼80 hr to reach equilibrium. Activation energy, Ea, for the sorption of Pb2+, Zn2+, Cu2+, Co2+ was < 17 kJ/mol indicating a diffusion controlled ion exchange process, however, for Ag+, Pd2+ and Hg2+ sorption, Ea was > 40 kJ/mol indicating a chemically controlled process. Equilibrium sorption capacity was much higher for Ag+, Pd2+ and Hg2+ than for Pb2+, Zn2+, Cu2+, Co2+ with increased uptake, for both metals, by rising the temperature (25-45 °C). Scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy showed that Ag+ and Pd2+ were reduced to their respective elemental states. For Hg2+, reduction took place to elemental mercury from nitrate media and to Hg2Cl2 from the chloride media. However, no reduction processes were involved in the sorption of Pb2+, Zn2+, Cu2+, Co2+.

KW - Dehydrated carbon

KW - Heavy metals

KW - Reduction

KW - Sorption

UR - http://www.scopus.com/inward/record.url?scp=85016453628&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85016453628&partnerID=8YFLogxK

U2 - 10.1051/e3sconf/20130105004

DO - 10.1051/e3sconf/20130105004

M3 - Article

VL - 1

JO - E3S Web of Conferences

JF - E3S Web of Conferences

SN - 2267-1242

M1 - 05004

ER -