Hyperbolic besov functions and bloch-to-besov composition operators

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Compactness of composition operators from the Bloch space B into the analytic Besov spaces Bp is characterized by the behavior of the hyperbolic derivative of self-maps of the unit disk D.

Original languageEnglish
Pages (from-to)699-711
Number of pages13
JournalHokkaido Mathematical Journal
Volume26
Issue number3
DOIs
Publication statusPublished - Jan 1 1997

Fingerprint

Hyperbolic derivative
Bloch Space
Composition Operator
Besov Spaces
Unit Disk
Compactness

Keywords

  • Besov space
  • Bloch space
  • Composition operator
  • Hyperbolic derivative

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Hyperbolic besov functions and bloch-to-besov composition operators. / Makhmutov, Shamil.

In: Hokkaido Mathematical Journal, Vol. 26, No. 3, 01.01.1997, p. 699-711.

Research output: Contribution to journalArticle

@article{c9aae5f118024d1c82244ee5338e1ec3,
title = "Hyperbolic besov functions and bloch-to-besov composition operators",
abstract = "Compactness of composition operators from the Bloch space B into the analytic Besov spaces Bp is characterized by the behavior of the hyperbolic derivative of self-maps of the unit disk D.",
keywords = "Besov space, Bloch space, Composition operator, Hyperbolic derivative",
author = "Shamil Makhmutov",
year = "1997",
month = "1",
day = "1",
doi = "10.14492/hokmj/1351258272",
language = "English",
volume = "26",
pages = "699--711",
journal = "Hokkaido Mathematical Journal",
issn = "0385-4035",
publisher = "Department of Mathematics, Hokkaido University",
number = "3",

}

TY - JOUR

T1 - Hyperbolic besov functions and bloch-to-besov composition operators

AU - Makhmutov, Shamil

PY - 1997/1/1

Y1 - 1997/1/1

N2 - Compactness of composition operators from the Bloch space B into the analytic Besov spaces Bp is characterized by the behavior of the hyperbolic derivative of self-maps of the unit disk D.

AB - Compactness of composition operators from the Bloch space B into the analytic Besov spaces Bp is characterized by the behavior of the hyperbolic derivative of self-maps of the unit disk D.

KW - Besov space

KW - Bloch space

KW - Composition operator

KW - Hyperbolic derivative

UR - http://www.scopus.com/inward/record.url?scp=0039765719&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0039765719&partnerID=8YFLogxK

U2 - 10.14492/hokmj/1351258272

DO - 10.14492/hokmj/1351258272

M3 - Article

AN - SCOPUS:0039765719

VL - 26

SP - 699

EP - 711

JO - Hokkaido Mathematical Journal

JF - Hokkaido Mathematical Journal

SN - 0385-4035

IS - 3

ER -