Explicit construction of the voronoi and delaunay cells of W(An) and W(Dn) lattices and their facets

Mehmet Koca, Nazife Koca, Abeer Al-Siyabi, Ramazan Koc

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Voronoi and Delaunay (Delone) cells of the root and weight lattices of the Coxeter-Weyl groups W(An) and W(Dn) are constructed. The face-centred cubic (f.c.c.) and body-centred cubic (b.c.c.) lattices are obtained in this context. Basic definitions are introduced such as parallelotope, fundamental simplex, contact polytope, root polytope, Voronoi cell, Delone cell, n-simplex, n-octahedron (cross polytope), n-cube and n-hemicube and their volumes are calculated. The Voronoi cell of the root lattice is constructed as the dual of the root polytope which turns out to be the union of Delone cells. It is shown that the Delone cells centred at the origin of the root lattice An are the polytopes of the fundamental weights ω1, ω2, …, ωn and the Delone cells of the root lattice Dn are the polytopes obtained from the weights ω1, ωn-1 and ωn. A simple mechanism explains the tessellation of the root lattice by Delone cells. It is proved that the (n-1)-facet of the Voronoi cell of the root lattice An is an (n-1)- dimensional rhombohedron and similarly the (n-1)-facet of the Voronoi cell of the root lattice Dn is a dipyramid with a base of an (n-2)-cube. The volume of the Voronoi cell is calculated via its (n-1)-facet which in turn can be obtained from the fundamental simplex. Tessellations of the root lattice with the Voronoi and Delone cells are explained by giving examples from lower dimensions. Similar considerations are also worked out for the weight lattices An* and Dn*. It is pointed out that the projection of the higher-dimensional root and weight lattices on the Coxeter plane leads to the h-fold aperiodic tiling, where h is the Coxeter number of the Coxeter-Weyl group. Tiles of the Coxeter plane can be obtained by projection of the two-dimensional faces of the Voronoi or Delone cells. Examples are given such as the Penrose-like fivefold symmetric tessellation by the A4 root lattice and the eightfold symmetric tessellation by the D5 root lattice.

Original languageEnglish
Pages (from-to)499-511
Number of pages13
JournalActa Crystallographica Section A: Foundations and Advances
Volume74
Issue number5
DOIs
Publication statusPublished - Sep 1 2018

Fingerprint

Tile
flat surfaces
cells
Weights and Measures
polytopes
projection
body centered cubic lattices
unions
tiles
Cell Size

Keywords

  • Coxeter-Weyl groups
  • Lattices
  • Volumes of regular polytopes
  • Voronoi and Delone cells

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Materials Science(all)
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Cite this

Explicit construction of the voronoi and delaunay cells of W(An) and W(Dn) lattices and their facets. / Koca, Mehmet; Koca, Nazife; Al-Siyabi, Abeer; Koc, Ramazan.

In: Acta Crystallographica Section A: Foundations and Advances, Vol. 74, No. 5, 01.09.2018, p. 499-511.

Research output: Contribution to journalArticle

@article{bd09efffc88d4acdbe5bbe5e72071713,
title = "Explicit construction of the voronoi and delaunay cells of W(An) and W(Dn) lattices and their facets",
abstract = "Voronoi and Delaunay (Delone) cells of the root and weight lattices of the Coxeter-Weyl groups W(An) and W(Dn) are constructed. The face-centred cubic (f.c.c.) and body-centred cubic (b.c.c.) lattices are obtained in this context. Basic definitions are introduced such as parallelotope, fundamental simplex, contact polytope, root polytope, Voronoi cell, Delone cell, n-simplex, n-octahedron (cross polytope), n-cube and n-hemicube and their volumes are calculated. The Voronoi cell of the root lattice is constructed as the dual of the root polytope which turns out to be the union of Delone cells. It is shown that the Delone cells centred at the origin of the root lattice An are the polytopes of the fundamental weights ω1, ω2, …, ωn and the Delone cells of the root lattice Dn are the polytopes obtained from the weights ω1, ωn-1 and ωn. A simple mechanism explains the tessellation of the root lattice by Delone cells. It is proved that the (n-1)-facet of the Voronoi cell of the root lattice An is an (n-1)- dimensional rhombohedron and similarly the (n-1)-facet of the Voronoi cell of the root lattice Dn is a dipyramid with a base of an (n-2)-cube. The volume of the Voronoi cell is calculated via its (n-1)-facet which in turn can be obtained from the fundamental simplex. Tessellations of the root lattice with the Voronoi and Delone cells are explained by giving examples from lower dimensions. Similar considerations are also worked out for the weight lattices An* and Dn*. It is pointed out that the projection of the higher-dimensional root and weight lattices on the Coxeter plane leads to the h-fold aperiodic tiling, where h is the Coxeter number of the Coxeter-Weyl group. Tiles of the Coxeter plane can be obtained by projection of the two-dimensional faces of the Voronoi or Delone cells. Examples are given such as the Penrose-like fivefold symmetric tessellation by the A4 root lattice and the eightfold symmetric tessellation by the D5 root lattice.",
keywords = "Coxeter-Weyl groups, Lattices, Volumes of regular polytopes, Voronoi and Delone cells",
author = "Mehmet Koca and Nazife Koca and Abeer Al-Siyabi and Ramazan Koc",
year = "2018",
month = "9",
day = "1",
doi = "10.1107/S2053273318007842",
language = "English",
volume = "74",
pages = "499--511",
journal = "Acta Crystallographica Section A: Foundations and Advances",
issn = "0108-7673",
publisher = "John Wiley and Sons Inc.",
number = "5",

}

TY - JOUR

T1 - Explicit construction of the voronoi and delaunay cells of W(An) and W(Dn) lattices and their facets

AU - Koca, Mehmet

AU - Koca, Nazife

AU - Al-Siyabi, Abeer

AU - Koc, Ramazan

PY - 2018/9/1

Y1 - 2018/9/1

N2 - Voronoi and Delaunay (Delone) cells of the root and weight lattices of the Coxeter-Weyl groups W(An) and W(Dn) are constructed. The face-centred cubic (f.c.c.) and body-centred cubic (b.c.c.) lattices are obtained in this context. Basic definitions are introduced such as parallelotope, fundamental simplex, contact polytope, root polytope, Voronoi cell, Delone cell, n-simplex, n-octahedron (cross polytope), n-cube and n-hemicube and their volumes are calculated. The Voronoi cell of the root lattice is constructed as the dual of the root polytope which turns out to be the union of Delone cells. It is shown that the Delone cells centred at the origin of the root lattice An are the polytopes of the fundamental weights ω1, ω2, …, ωn and the Delone cells of the root lattice Dn are the polytopes obtained from the weights ω1, ωn-1 and ωn. A simple mechanism explains the tessellation of the root lattice by Delone cells. It is proved that the (n-1)-facet of the Voronoi cell of the root lattice An is an (n-1)- dimensional rhombohedron and similarly the (n-1)-facet of the Voronoi cell of the root lattice Dn is a dipyramid with a base of an (n-2)-cube. The volume of the Voronoi cell is calculated via its (n-1)-facet which in turn can be obtained from the fundamental simplex. Tessellations of the root lattice with the Voronoi and Delone cells are explained by giving examples from lower dimensions. Similar considerations are also worked out for the weight lattices An* and Dn*. It is pointed out that the projection of the higher-dimensional root and weight lattices on the Coxeter plane leads to the h-fold aperiodic tiling, where h is the Coxeter number of the Coxeter-Weyl group. Tiles of the Coxeter plane can be obtained by projection of the two-dimensional faces of the Voronoi or Delone cells. Examples are given such as the Penrose-like fivefold symmetric tessellation by the A4 root lattice and the eightfold symmetric tessellation by the D5 root lattice.

AB - Voronoi and Delaunay (Delone) cells of the root and weight lattices of the Coxeter-Weyl groups W(An) and W(Dn) are constructed. The face-centred cubic (f.c.c.) and body-centred cubic (b.c.c.) lattices are obtained in this context. Basic definitions are introduced such as parallelotope, fundamental simplex, contact polytope, root polytope, Voronoi cell, Delone cell, n-simplex, n-octahedron (cross polytope), n-cube and n-hemicube and their volumes are calculated. The Voronoi cell of the root lattice is constructed as the dual of the root polytope which turns out to be the union of Delone cells. It is shown that the Delone cells centred at the origin of the root lattice An are the polytopes of the fundamental weights ω1, ω2, …, ωn and the Delone cells of the root lattice Dn are the polytopes obtained from the weights ω1, ωn-1 and ωn. A simple mechanism explains the tessellation of the root lattice by Delone cells. It is proved that the (n-1)-facet of the Voronoi cell of the root lattice An is an (n-1)- dimensional rhombohedron and similarly the (n-1)-facet of the Voronoi cell of the root lattice Dn is a dipyramid with a base of an (n-2)-cube. The volume of the Voronoi cell is calculated via its (n-1)-facet which in turn can be obtained from the fundamental simplex. Tessellations of the root lattice with the Voronoi and Delone cells are explained by giving examples from lower dimensions. Similar considerations are also worked out for the weight lattices An* and Dn*. It is pointed out that the projection of the higher-dimensional root and weight lattices on the Coxeter plane leads to the h-fold aperiodic tiling, where h is the Coxeter number of the Coxeter-Weyl group. Tiles of the Coxeter plane can be obtained by projection of the two-dimensional faces of the Voronoi or Delone cells. Examples are given such as the Penrose-like fivefold symmetric tessellation by the A4 root lattice and the eightfold symmetric tessellation by the D5 root lattice.

KW - Coxeter-Weyl groups

KW - Lattices

KW - Volumes of regular polytopes

KW - Voronoi and Delone cells

UR - http://www.scopus.com/inward/record.url?scp=85052911280&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052911280&partnerID=8YFLogxK

U2 - 10.1107/S2053273318007842

DO - 10.1107/S2053273318007842

M3 - Article

AN - SCOPUS:85052911280

VL - 74

SP - 499

EP - 511

JO - Acta Crystallographica Section A: Foundations and Advances

JF - Acta Crystallographica Section A: Foundations and Advances

SN - 0108-7673

IS - 5

ER -