Enhanced detection of microsatellite instability and mismatch repair gene expression in cutaneous squamous cell carcinomas

Sarah E. Gray, Elaine W. Kay, Mary Leader, Mohamed J E M F Mabruk

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Background: Microsatellite instability (MSI) is a phenotypic characteristic of tumors with biallelic inactivation of mismatch repair genes, such as MSH2 or MLH1, and contributes to malignant transformation. Aims: The aim of this study was to examine the prevalence of MSI in cutaneous squamous cell carcinoma (SCC) using a PCR and fluorescent-based detection system. These methods of analysis offer several advantages over the use of silver staining and autoradiographic techniques. We also aimed to determine if MSI status correlated with expression of the MSH2 and MLH1 mismatch repair proteins in these cutaneous SCC samples. Methods: The MSI status of 22 histologically confirmed invasive cutaneous SCC samples were analyzed at five microsatellite markers (the National Cancer Institute's Bethesda panel of two mononucleotide and three dinucleotide markers) using a PCR and fluorescent-based detection system. Immunohistochemical analysis of MSH2 and MLH1 protein expression was also carried out on the SCC samples. Results: Only one case of cutaneous SCC displayed MSI. This was found at just one of five markers, and thus was low frequency MSI. All 22 cutaneous SCC cases strongly expressed MSH2 protein. Eighteen (82%) of the cutaneous SCC cases showed moderate to strong expression of MLH1 protein. The remaining four cases of cutaneous SCC were negative for MLH1 protein. Therefore, the majority of the SCC patients analyzed showed a correlation between absence of MSI and expression of MSH2 and MLH1 proteins. Conclusions: MSI is uncommon in cutaneous SCC. In addition, MSH2 was strongly expressed in all SCC samples analyzed and appeared to be upregulated when compared with the corresponding normal tissue. MLH1 protein was not detected in 4 of 22 SCC cases, although it was expressed in the corresponding normal tissue, suggesting that inactivation of MLH1 may be a late event in a subset of invasive SCC cases.

Original languageEnglish
Pages (from-to)327-334
Number of pages8
JournalMolecular Diagnosis and Therapy
Volume10
Issue number5
Publication statusPublished - 2006

Fingerprint

Microsatellite Instability
DNA Mismatch Repair
Squamous Cell Carcinoma
Gene Expression
Skin
Polymerase Chain Reaction
Silver Staining
National Cancer Institute (U.S.)
Microsatellite Repeats
Proteins

ASJC Scopus subject areas

  • Genetics
  • Molecular Medicine
  • Medicine(all)
  • Pharmacology

Cite this

Enhanced detection of microsatellite instability and mismatch repair gene expression in cutaneous squamous cell carcinomas. / Gray, Sarah E.; Kay, Elaine W.; Leader, Mary; Mabruk, Mohamed J E M F.

In: Molecular Diagnosis and Therapy, Vol. 10, No. 5, 2006, p. 327-334.

Research output: Contribution to journalArticle

@article{be87b266ca07433daf45ec1dfedcfdaf,
title = "Enhanced detection of microsatellite instability and mismatch repair gene expression in cutaneous squamous cell carcinomas",
abstract = "Background: Microsatellite instability (MSI) is a phenotypic characteristic of tumors with biallelic inactivation of mismatch repair genes, such as MSH2 or MLH1, and contributes to malignant transformation. Aims: The aim of this study was to examine the prevalence of MSI in cutaneous squamous cell carcinoma (SCC) using a PCR and fluorescent-based detection system. These methods of analysis offer several advantages over the use of silver staining and autoradiographic techniques. We also aimed to determine if MSI status correlated with expression of the MSH2 and MLH1 mismatch repair proteins in these cutaneous SCC samples. Methods: The MSI status of 22 histologically confirmed invasive cutaneous SCC samples were analyzed at five microsatellite markers (the National Cancer Institute's Bethesda panel of two mononucleotide and three dinucleotide markers) using a PCR and fluorescent-based detection system. Immunohistochemical analysis of MSH2 and MLH1 protein expression was also carried out on the SCC samples. Results: Only one case of cutaneous SCC displayed MSI. This was found at just one of five markers, and thus was low frequency MSI. All 22 cutaneous SCC cases strongly expressed MSH2 protein. Eighteen (82{\%}) of the cutaneous SCC cases showed moderate to strong expression of MLH1 protein. The remaining four cases of cutaneous SCC were negative for MLH1 protein. Therefore, the majority of the SCC patients analyzed showed a correlation between absence of MSI and expression of MSH2 and MLH1 proteins. Conclusions: MSI is uncommon in cutaneous SCC. In addition, MSH2 was strongly expressed in all SCC samples analyzed and appeared to be upregulated when compared with the corresponding normal tissue. MLH1 protein was not detected in 4 of 22 SCC cases, although it was expressed in the corresponding normal tissue, suggesting that inactivation of MLH1 may be a late event in a subset of invasive SCC cases.",
author = "Gray, {Sarah E.} and Kay, {Elaine W.} and Mary Leader and Mabruk, {Mohamed J E M F}",
year = "2006",
language = "English",
volume = "10",
pages = "327--334",
journal = "Molecular Diagnosis and Therapy",
issn = "1177-1062",
publisher = "Adis International Ltd",
number = "5",

}

TY - JOUR

T1 - Enhanced detection of microsatellite instability and mismatch repair gene expression in cutaneous squamous cell carcinomas

AU - Gray, Sarah E.

AU - Kay, Elaine W.

AU - Leader, Mary

AU - Mabruk, Mohamed J E M F

PY - 2006

Y1 - 2006

N2 - Background: Microsatellite instability (MSI) is a phenotypic characteristic of tumors with biallelic inactivation of mismatch repair genes, such as MSH2 or MLH1, and contributes to malignant transformation. Aims: The aim of this study was to examine the prevalence of MSI in cutaneous squamous cell carcinoma (SCC) using a PCR and fluorescent-based detection system. These methods of analysis offer several advantages over the use of silver staining and autoradiographic techniques. We also aimed to determine if MSI status correlated with expression of the MSH2 and MLH1 mismatch repair proteins in these cutaneous SCC samples. Methods: The MSI status of 22 histologically confirmed invasive cutaneous SCC samples were analyzed at five microsatellite markers (the National Cancer Institute's Bethesda panel of two mononucleotide and three dinucleotide markers) using a PCR and fluorescent-based detection system. Immunohistochemical analysis of MSH2 and MLH1 protein expression was also carried out on the SCC samples. Results: Only one case of cutaneous SCC displayed MSI. This was found at just one of five markers, and thus was low frequency MSI. All 22 cutaneous SCC cases strongly expressed MSH2 protein. Eighteen (82%) of the cutaneous SCC cases showed moderate to strong expression of MLH1 protein. The remaining four cases of cutaneous SCC were negative for MLH1 protein. Therefore, the majority of the SCC patients analyzed showed a correlation between absence of MSI and expression of MSH2 and MLH1 proteins. Conclusions: MSI is uncommon in cutaneous SCC. In addition, MSH2 was strongly expressed in all SCC samples analyzed and appeared to be upregulated when compared with the corresponding normal tissue. MLH1 protein was not detected in 4 of 22 SCC cases, although it was expressed in the corresponding normal tissue, suggesting that inactivation of MLH1 may be a late event in a subset of invasive SCC cases.

AB - Background: Microsatellite instability (MSI) is a phenotypic characteristic of tumors with biallelic inactivation of mismatch repair genes, such as MSH2 or MLH1, and contributes to malignant transformation. Aims: The aim of this study was to examine the prevalence of MSI in cutaneous squamous cell carcinoma (SCC) using a PCR and fluorescent-based detection system. These methods of analysis offer several advantages over the use of silver staining and autoradiographic techniques. We also aimed to determine if MSI status correlated with expression of the MSH2 and MLH1 mismatch repair proteins in these cutaneous SCC samples. Methods: The MSI status of 22 histologically confirmed invasive cutaneous SCC samples were analyzed at five microsatellite markers (the National Cancer Institute's Bethesda panel of two mononucleotide and three dinucleotide markers) using a PCR and fluorescent-based detection system. Immunohistochemical analysis of MSH2 and MLH1 protein expression was also carried out on the SCC samples. Results: Only one case of cutaneous SCC displayed MSI. This was found at just one of five markers, and thus was low frequency MSI. All 22 cutaneous SCC cases strongly expressed MSH2 protein. Eighteen (82%) of the cutaneous SCC cases showed moderate to strong expression of MLH1 protein. The remaining four cases of cutaneous SCC were negative for MLH1 protein. Therefore, the majority of the SCC patients analyzed showed a correlation between absence of MSI and expression of MSH2 and MLH1 proteins. Conclusions: MSI is uncommon in cutaneous SCC. In addition, MSH2 was strongly expressed in all SCC samples analyzed and appeared to be upregulated when compared with the corresponding normal tissue. MLH1 protein was not detected in 4 of 22 SCC cases, although it was expressed in the corresponding normal tissue, suggesting that inactivation of MLH1 may be a late event in a subset of invasive SCC cases.

UR - http://www.scopus.com/inward/record.url?scp=33749827695&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749827695&partnerID=8YFLogxK

M3 - Article

C2 - 17022696

AN - SCOPUS:33749827695

VL - 10

SP - 327

EP - 334

JO - Molecular Diagnosis and Therapy

JF - Molecular Diagnosis and Therapy

SN - 1177-1062

IS - 5

ER -