Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland

Raeid M.M. Abed*, Samiha Al-Kharusi, Stephane Prigent, Tom Headley

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

Various types of cyanobacterial mats were predominant in a wetland, constructed for the remediation of oil-polluted residual waters from an oil field in the desert of the south-eastern Arabian Peninsula, although such mats were rarely found in other wetland systems. There is scarce information on the bacterial diversity, spatial distribution and oil-biodegradation capabilities of freshwater wetland oil-polluted mats. Microbial community analysis by Automated Ribosomal Spacer Analysis (ARISA) showed that the different mats hosted distinct microbial communities. Average numbers of operational taxonomic units (OTUsARISA) were relatively lower in the mats with higher oil levels and the number of shared OTUsARISA between the mats was <60% in most cases. Multivariate analyses of fingerprinting profiles indicated that the bacterial communities in the wetland mats were influenced by oil and ammonia levels, but to a lesser extent by plant density. In addition to oil and ammonia, redundancy analysis (RDA) showed also a significant contribution of temperature, dissolved oxygen and sulfate concentration to the variations of the mats' microbial communities. Pyrosequencing yielded 282,706 reads with >90% of the sequences affiliated to Proteobacteria (41% of total sequences), Cyanobacteria (31%) , Bacteriodetes (11.5%), Planctomycetes (7%) and Chloroflexi (3%). Known autotrophic (e.g. Rivularia) and heterotrophic (e.g. Azospira) nitrogen-fixing bacteria as well as purple sulfur and non-sulfur bacteria were frequently encountered in all mats. On the other hand, sequences of known sulfate-reducing bacteria (SRBs) were rarely found, indicating that SRBs in the wetland mats probably belong to yet-undescribed novel species. The wetland mats were able to degrade 53-100% of C12-C30 alkanes after 6 weeks of incubation under aerobic conditions. We conclude that oil and ammonia concentrations are the major key players in determining the spatial distribution of the wetland mats' microbial communities and that these mats contribute directly to the removal of hydrocarbons from oil field wastewaters.

Original languageEnglish
Article numbere114570
JournalPLoS One
Volume9
Issue number12
DOIs
Publication statusPublished - Dec 16 2014

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland'. Together they form a unique fingerprint.

Cite this