Distributed specific sediment yield estimations in Japan attributed to extreme-rainfall-induced slope failures under a changing climate

K. Ono, T. Akimoto, L. N. Gunawardhana, S. Kazama, S. Kawagoe

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure probability accounts for the effects of topography (as relief energy), geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations) and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario) for the future and by accounting for the slope failure probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan. Time series analyses of annual sediment yields covering 15-20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5-7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 Combining double low line 0.65). The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 Combining double low line 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment yield for all of Japan is considered, both scenarios produced an approximately 17-18% increase around the first half of the 21st century as compared to the present climate. For the second half of the century, the MIROC and MRI-RCM20 scenarios predict increased sediment yields of 22% and 14%, respectively, as compared to present climate estimations. On a regional scale, both scenarios identified several common areas prone to increased sediment yields in the future. Substantially higher specific sediment yield changes (over 1000 m 3/km2/year) were estimated for the Hokuriku, Kinki and Shikoku regions. Out of 105 river basins in Japan, 96 will have an increasing trend of sediment yield under a changing climate, according to the predictions. Among them, five river basins will experience an increase of more than 90% of the present sediment yield in the future. This study is therefore expected to guide decision-makers in identifying the basins that are prone to sedimentation hazard under a changing climate in order to prepare and implement appropriate mitigation measures to cope with the impacts.

Original languageEnglish
Pages (from-to)197-207
Number of pages11
JournalHydrology and Earth System Sciences
Volume15
Issue number1
DOIs
Publication statusPublished - 2011

Fingerprint

slope failure
sediment yield
rainfall
climate
dam
river basin
hazard
sedimentation
hydraulics
climate variation
twenty first century
return period
general circulation model

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)
  • Water Science and Technology

Cite this

Distributed specific sediment yield estimations in Japan attributed to extreme-rainfall-induced slope failures under a changing climate. / Ono, K.; Akimoto, T.; Gunawardhana, L. N.; Kazama, S.; Kawagoe, S.

In: Hydrology and Earth System Sciences, Vol. 15, No. 1, 2011, p. 197-207.

Research output: Contribution to journalArticle

@article{131b08dd63414e4ba6aab468c419c559,
title = "Distributed specific sediment yield estimations in Japan attributed to extreme-rainfall-induced slope failures under a changing climate",
abstract = "The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure probability accounts for the effects of topography (as relief energy), geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations) and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario) for the future and by accounting for the slope failure probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan. Time series analyses of annual sediment yields covering 15-20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5-7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 Combining double low line 0.65). The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 Combining double low line 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment yield for all of Japan is considered, both scenarios produced an approximately 17-18{\%} increase around the first half of the 21st century as compared to the present climate. For the second half of the century, the MIROC and MRI-RCM20 scenarios predict increased sediment yields of 22{\%} and 14{\%}, respectively, as compared to present climate estimations. On a regional scale, both scenarios identified several common areas prone to increased sediment yields in the future. Substantially higher specific sediment yield changes (over 1000 m 3/km2/year) were estimated for the Hokuriku, Kinki and Shikoku regions. Out of 105 river basins in Japan, 96 will have an increasing trend of sediment yield under a changing climate, according to the predictions. Among them, five river basins will experience an increase of more than 90{\%} of the present sediment yield in the future. This study is therefore expected to guide decision-makers in identifying the basins that are prone to sedimentation hazard under a changing climate in order to prepare and implement appropriate mitigation measures to cope with the impacts.",
author = "K. Ono and T. Akimoto and Gunawardhana, {L. N.} and S. Kazama and S. Kawagoe",
year = "2011",
doi = "10.5194/hess-15-197-2011",
language = "English",
volume = "15",
pages = "197--207",
journal = "Hydrology and Earth System Sciences",
issn = "1027-5606",
publisher = "European Geosciences Union",
number = "1",

}

TY - JOUR

T1 - Distributed specific sediment yield estimations in Japan attributed to extreme-rainfall-induced slope failures under a changing climate

AU - Ono, K.

AU - Akimoto, T.

AU - Gunawardhana, L. N.

AU - Kazama, S.

AU - Kawagoe, S.

PY - 2011

Y1 - 2011

N2 - The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure probability accounts for the effects of topography (as relief energy), geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations) and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario) for the future and by accounting for the slope failure probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan. Time series analyses of annual sediment yields covering 15-20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5-7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 Combining double low line 0.65). The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 Combining double low line 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment yield for all of Japan is considered, both scenarios produced an approximately 17-18% increase around the first half of the 21st century as compared to the present climate. For the second half of the century, the MIROC and MRI-RCM20 scenarios predict increased sediment yields of 22% and 14%, respectively, as compared to present climate estimations. On a regional scale, both scenarios identified several common areas prone to increased sediment yields in the future. Substantially higher specific sediment yield changes (over 1000 m 3/km2/year) were estimated for the Hokuriku, Kinki and Shikoku regions. Out of 105 river basins in Japan, 96 will have an increasing trend of sediment yield under a changing climate, according to the predictions. Among them, five river basins will experience an increase of more than 90% of the present sediment yield in the future. This study is therefore expected to guide decision-makers in identifying the basins that are prone to sedimentation hazard under a changing climate in order to prepare and implement appropriate mitigation measures to cope with the impacts.

AB - The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure probability accounts for the effects of topography (as relief energy), geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations) and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario) for the future and by accounting for the slope failure probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan. Time series analyses of annual sediment yields covering 15-20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5-7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 Combining double low line 0.65). The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 Combining double low line 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment yield for all of Japan is considered, both scenarios produced an approximately 17-18% increase around the first half of the 21st century as compared to the present climate. For the second half of the century, the MIROC and MRI-RCM20 scenarios predict increased sediment yields of 22% and 14%, respectively, as compared to present climate estimations. On a regional scale, both scenarios identified several common areas prone to increased sediment yields in the future. Substantially higher specific sediment yield changes (over 1000 m 3/km2/year) were estimated for the Hokuriku, Kinki and Shikoku regions. Out of 105 river basins in Japan, 96 will have an increasing trend of sediment yield under a changing climate, according to the predictions. Among them, five river basins will experience an increase of more than 90% of the present sediment yield in the future. This study is therefore expected to guide decision-makers in identifying the basins that are prone to sedimentation hazard under a changing climate in order to prepare and implement appropriate mitigation measures to cope with the impacts.

UR - http://www.scopus.com/inward/record.url?scp=78951488203&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78951488203&partnerID=8YFLogxK

U2 - 10.5194/hess-15-197-2011

DO - 10.5194/hess-15-197-2011

M3 - Article

AN - SCOPUS:78951488203

VL - 15

SP - 197

EP - 207

JO - Hydrology and Earth System Sciences

JF - Hydrology and Earth System Sciences

SN - 1027-5606

IS - 1

ER -