Abstract
We report on the test beam results and calibration methods using high energy electrons, pions and muons with the CMS forward calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3≤|η|≤5), and is essential for a large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels in Higgs production. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h≈5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/√⊕b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%.
Original language | English |
---|---|
Pages (from-to) | 139-166 |
Number of pages | 28 |
Journal | European Physical Journal C |
Volume | 53 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2008 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics
Access to Document
Fingerprint Dive into the research topics of 'Design, performance, and calibration of CMS forward calorimeter wedges'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Design, performance, and calibration of CMS forward calorimeter wedges. / Abdullin, S.; Abramov, V.; Acharya, B.; Adams, M.; Akchurin, N.; Akgun, U.; Anderson, E. W.; Antchev, G.; Arcidy, M.; Ayan, S.; Aydin, S.; Baarmand, M.; Babich, K.; Baden, D.; Bakirci, M. N.; Banerjee, Sud; Banerjee, Sun; Bard, R.; Barnes, V.; Bawa, H.; Baiatian, G.; Bencze, G.; Beri, S.; Bhatnagar, V.; Bodek, A.; Budd, H.; Burchesky, K.; Camporesi, T.; Cankoçak, K.; Carrell, K.; Cerci, S.; Chendvankar, S.; Chung, Y.; Cremaldi, L.; Cushman, P.; Damgov, J.; De Barbaro, P.; Deliomeroglu, M.; Demianov, A.; De Visser, T.; Dimitrov, L.; Dindar, K.; Dugad, S.; Dumanoglu, I.; Duru, F.; Elias, J.; Elvira, D.; Emeliantchik, I.; Eno, S.; Eskut, E.; Fenyvesi, A.; Fisher, W.; Freeman, J.; Gamsizkan, H.; Gavrilov, V.; Genchev, V.; Gershtein, Y.; Golutvin, I.; Goncharov, P.; Grassi, T.; Green, D.; Gribushin, A.; Grinev, B.; Gülmez, E.; Gümüş, K.; Haelen, T.; Hagopian, S.; Hagopian, V.; Hashemi, M.; Hauptman, J.; Hazen, E.; Heering, A.; Ilyina, N.; Isiksal, E.; Jarvis, C.; Johnson, K.; Kaftanov, V.; Kalagin, V.; Kalinin, A.; Karmgard, D.; Kalmani, S.; Katta, S.; Kaur, M.; Kaya, M.; Kayis-Topaksu, A.; Kellogg, R.; Khmelnikov, A.; Kim, H.; Kisselevich, I.; Kodolova, O.; Kohli, J.; Kolossov, V.; Korablev, A.; Korneev, Y.; Kosarev, I.; Koylu, S.; Kramer, L.; Krinitsyn, A.; Krokhotin, A.; Kryshkin, V.; Kuleshov, S.; Kumar, A.; Kunori, S.; Kurt, P.; Kuzucu-Polatoz, A.; Laasanen, A.; Ladygin, V.; Laszlo, A.; Lawlor, C.; Lazic, D.; Levchuk, L.; Linn, S.; Litvintsev, D.; Litov, L.; Los, S.; Lubinsky, V.; Lukanin, V.; Ma, Y.; MacHado, E.; Mans, J.; Markowitz, P.; Massolov, V.; Martinez, G.; Mazumdar, K.; Merlo, J. P.; Mermerkaya, H.; Mescheryakov, G.; Mestvirishvili, A.; Miller, M.; Mohammadi-Najafabadi, M.; Moissenz, P.; Mondal, N.; Nagaraj, P.; Norbeck, E.; Olson, J.; Onel, Y.; Onengut, G.; Ozdes-Koca, N.; Ozkan, C.; Ozkurt, H.; Ozkorucuklu, S.; Paktinat, S.; Pal, A.; Patil, M.; Penzo, A.; Petrushanko, S.; Petrosyan, A.; Pikalov, V.; Piperov, S.; Podrasky, V.; Pompos, A.; Posch, C.; Qiang, W.; Reddy, L.; Reidy, J.; Ruchti, R.; Rogalev, E.; Rohlf, J.; Ronzhin, A.; Ryazanov, A.; Safronov, G.; Sanders, D. A.; Sanzeni, C.; Sarycheva, L.; Satyanarayana, B.; Schmidt, I.; Sekmen, S.; Semenov, S.; Senchishin, V.; Sergeyev, S.; Serin-Zeyrek, M.; Sever, R.; Singh, J.; Sirunyan, A.; Skuja, A.; Sharma, S.; Sherwood, B.; Shumeiko, N.; Smirnov, V.; Sogut, K.; Sorokin, P.; Spezziga, M.; Stefanovich, R.; Stolin, V.; Sulak, L.; Suzuki, I.; Talov, V.; Teplov, K.; Thomas, R.; Topakli, H.; Tully, C.; Turchanovich, L.; Ulyanov, A.; Vankov, I.; Vardanyan, I.; Varela, F.; Vergili, M.; Verma, P.; Vesztergombi, G.; Vidal, R.; Vishnevskiy, A.; Vlassov, E.; Vodopiyanov, I.; Volkov, A.; Volodko, A.; Wang, L.; Wetstein, M.; Winn, D.; Wigmans, R.; Whitmore, J.; Wu, S. X.; Yazgan, E.; Yershov, A.; Yetkin, T.; Zalan, P.; Zarubin, A.; Zeyrek, M.
In: European Physical Journal C, Vol. 53, No. 1, 01.2008, p. 139-166.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Design, performance, and calibration of CMS forward calorimeter wedges
AU - Abdullin, S.
AU - Abramov, V.
AU - Acharya, B.
AU - Adams, M.
AU - Akchurin, N.
AU - Akgun, U.
AU - Anderson, E. W.
AU - Antchev, G.
AU - Arcidy, M.
AU - Ayan, S.
AU - Aydin, S.
AU - Baarmand, M.
AU - Babich, K.
AU - Baden, D.
AU - Bakirci, M. N.
AU - Banerjee, Sud
AU - Banerjee, Sun
AU - Bard, R.
AU - Barnes, V.
AU - Bawa, H.
AU - Baiatian, G.
AU - Bencze, G.
AU - Beri, S.
AU - Bhatnagar, V.
AU - Bodek, A.
AU - Budd, H.
AU - Burchesky, K.
AU - Camporesi, T.
AU - Cankoçak, K.
AU - Carrell, K.
AU - Cerci, S.
AU - Chendvankar, S.
AU - Chung, Y.
AU - Cremaldi, L.
AU - Cushman, P.
AU - Damgov, J.
AU - De Barbaro, P.
AU - Deliomeroglu, M.
AU - Demianov, A.
AU - De Visser, T.
AU - Dimitrov, L.
AU - Dindar, K.
AU - Dugad, S.
AU - Dumanoglu, I.
AU - Duru, F.
AU - Elias, J.
AU - Elvira, D.
AU - Emeliantchik, I.
AU - Eno, S.
AU - Eskut, E.
AU - Fenyvesi, A.
AU - Fisher, W.
AU - Freeman, J.
AU - Gamsizkan, H.
AU - Gavrilov, V.
AU - Genchev, V.
AU - Gershtein, Y.
AU - Golutvin, I.
AU - Goncharov, P.
AU - Grassi, T.
AU - Green, D.
AU - Gribushin, A.
AU - Grinev, B.
AU - Gülmez, E.
AU - Gümüş, K.
AU - Haelen, T.
AU - Hagopian, S.
AU - Hagopian, V.
AU - Hashemi, M.
AU - Hauptman, J.
AU - Hazen, E.
AU - Heering, A.
AU - Ilyina, N.
AU - Isiksal, E.
AU - Jarvis, C.
AU - Johnson, K.
AU - Kaftanov, V.
AU - Kalagin, V.
AU - Kalinin, A.
AU - Karmgard, D.
AU - Kalmani, S.
AU - Katta, S.
AU - Kaur, M.
AU - Kaya, M.
AU - Kayis-Topaksu, A.
AU - Kellogg, R.
AU - Khmelnikov, A.
AU - Kim, H.
AU - Kisselevich, I.
AU - Kodolova, O.
AU - Kohli, J.
AU - Kolossov, V.
AU - Korablev, A.
AU - Korneev, Y.
AU - Kosarev, I.
AU - Koylu, S.
AU - Kramer, L.
AU - Krinitsyn, A.
AU - Krokhotin, A.
AU - Kryshkin, V.
AU - Kuleshov, S.
AU - Kumar, A.
AU - Kunori, S.
AU - Kurt, P.
AU - Kuzucu-Polatoz, A.
AU - Laasanen, A.
AU - Ladygin, V.
AU - Laszlo, A.
AU - Lawlor, C.
AU - Lazic, D.
AU - Levchuk, L.
AU - Linn, S.
AU - Litvintsev, D.
AU - Litov, L.
AU - Los, S.
AU - Lubinsky, V.
AU - Lukanin, V.
AU - Ma, Y.
AU - MacHado, E.
AU - Mans, J.
AU - Markowitz, P.
AU - Massolov, V.
AU - Martinez, G.
AU - Mazumdar, K.
AU - Merlo, J. P.
AU - Mermerkaya, H.
AU - Mescheryakov, G.
AU - Mestvirishvili, A.
AU - Miller, M.
AU - Mohammadi-Najafabadi, M.
AU - Moissenz, P.
AU - Mondal, N.
AU - Nagaraj, P.
AU - Norbeck, E.
AU - Olson, J.
AU - Onel, Y.
AU - Onengut, G.
AU - Ozdes-Koca, N.
AU - Ozkan, C.
AU - Ozkurt, H.
AU - Ozkorucuklu, S.
AU - Paktinat, S.
AU - Pal, A.
AU - Patil, M.
AU - Penzo, A.
AU - Petrushanko, S.
AU - Petrosyan, A.
AU - Pikalov, V.
AU - Piperov, S.
AU - Podrasky, V.
AU - Pompos, A.
AU - Posch, C.
AU - Qiang, W.
AU - Reddy, L.
AU - Reidy, J.
AU - Ruchti, R.
AU - Rogalev, E.
AU - Rohlf, J.
AU - Ronzhin, A.
AU - Ryazanov, A.
AU - Safronov, G.
AU - Sanders, D. A.
AU - Sanzeni, C.
AU - Sarycheva, L.
AU - Satyanarayana, B.
AU - Schmidt, I.
AU - Sekmen, S.
AU - Semenov, S.
AU - Senchishin, V.
AU - Sergeyev, S.
AU - Serin-Zeyrek, M.
AU - Sever, R.
AU - Singh, J.
AU - Sirunyan, A.
AU - Skuja, A.
AU - Sharma, S.
AU - Sherwood, B.
AU - Shumeiko, N.
AU - Smirnov, V.
AU - Sogut, K.
AU - Sorokin, P.
AU - Spezziga, M.
AU - Stefanovich, R.
AU - Stolin, V.
AU - Sulak, L.
AU - Suzuki, I.
AU - Talov, V.
AU - Teplov, K.
AU - Thomas, R.
AU - Topakli, H.
AU - Tully, C.
AU - Turchanovich, L.
AU - Ulyanov, A.
AU - Vankov, I.
AU - Vardanyan, I.
AU - Varela, F.
AU - Vergili, M.
AU - Verma, P.
AU - Vesztergombi, G.
AU - Vidal, R.
AU - Vishnevskiy, A.
AU - Vlassov, E.
AU - Vodopiyanov, I.
AU - Volkov, A.
AU - Volodko, A.
AU - Wang, L.
AU - Wetstein, M.
AU - Winn, D.
AU - Wigmans, R.
AU - Whitmore, J.
AU - Wu, S. X.
AU - Yazgan, E.
AU - Yershov, A.
AU - Yetkin, T.
AU - Zalan, P.
AU - Zarubin, A.
AU - Zeyrek, M.
PY - 2008/1
Y1 - 2008/1
N2 - We report on the test beam results and calibration methods using high energy electrons, pions and muons with the CMS forward calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3≤|η|≤5), and is essential for a large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels in Higgs production. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h≈5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/√⊕b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%.
AB - We report on the test beam results and calibration methods using high energy electrons, pions and muons with the CMS forward calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3≤|η|≤5), and is essential for a large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels in Higgs production. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h≈5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/√⊕b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%.
UR - http://www.scopus.com/inward/record.url?scp=36749015737&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36749015737&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-007-0459-4
DO - 10.1140/epjc/s10052-007-0459-4
M3 - Article
AN - SCOPUS:36749015737
VL - 53
SP - 139
EP - 166
JO - European Physical Journal C
JF - European Physical Journal C
SN - 1434-6044
IS - 1
ER -