Control of stagewise extractors using neural-based approximate predictive control as compared to nonlinear MPC

Research output: Contribution to journalArticle

Abstract

The control of liquid-liquid extraction processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. Traditional linear control schemes may have limited performance when applied in situations involving unknown process time delays, loop interactions, and processes with unknown order such as the extraction process itself. The objective of this work is to present a comparative study for the application of a nonlinear model predictive control technique for the control of an agitated type extractor as compared to an approximate nonlinear one. The process model used in the two control algorithms is based on a neural network approach. The implementation of these two algorithms covers the performance of the control system for the servo as well as regulatory control of the column. Both controllers were able to drive the process for good set-point tracking and disturbance rejection. The approximate model predictive control (MPC) was slightly faster in response and achieved its control objective in much lower computation time.

Original languageEnglish
Pages (from-to)227-250
Number of pages24
JournalSolvent Extraction and Ion Exchange
Volume24
Issue number2
DOIs
Publication statusPublished - 2006

Fingerprint

Model predictive control
Disturbance rejection
Liquids
Time delay
Neural networks
Control systems
Controllers

Keywords

  • Approximate predictive control
  • Extraction control
  • Model predictive control
  • Neural networks
  • Scheibel column

ASJC Scopus subject areas

  • Chemistry(all)
  • Filtration and Separation

Cite this

@article{7cb20fabe5bd4d13b6b502de0a172221,
title = "Control of stagewise extractors using neural-based approximate predictive control as compared to nonlinear MPC",
abstract = "The control of liquid-liquid extraction processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. Traditional linear control schemes may have limited performance when applied in situations involving unknown process time delays, loop interactions, and processes with unknown order such as the extraction process itself. The objective of this work is to present a comparative study for the application of a nonlinear model predictive control technique for the control of an agitated type extractor as compared to an approximate nonlinear one. The process model used in the two control algorithms is based on a neural network approach. The implementation of these two algorithms covers the performance of the control system for the servo as well as regulatory control of the column. Both controllers were able to drive the process for good set-point tracking and disturbance rejection. The approximate model predictive control (MPC) was slightly faster in response and achieved its control objective in much lower computation time.",
keywords = "Approximate predictive control, Extraction control, Model predictive control, Neural networks, Scheibel column",
author = "Mjalli, {Farouq S.}",
year = "2006",
doi = "10.1080/07366290500464326",
language = "English",
volume = "24",
pages = "227--250",
journal = "Solvent Extraction and Ion Exchange",
issn = "0736-6299",
publisher = "Taylor and Francis Ltd.",
number = "2",

}

TY - JOUR

T1 - Control of stagewise extractors using neural-based approximate predictive control as compared to nonlinear MPC

AU - Mjalli, Farouq S.

PY - 2006

Y1 - 2006

N2 - The control of liquid-liquid extraction processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. Traditional linear control schemes may have limited performance when applied in situations involving unknown process time delays, loop interactions, and processes with unknown order such as the extraction process itself. The objective of this work is to present a comparative study for the application of a nonlinear model predictive control technique for the control of an agitated type extractor as compared to an approximate nonlinear one. The process model used in the two control algorithms is based on a neural network approach. The implementation of these two algorithms covers the performance of the control system for the servo as well as regulatory control of the column. Both controllers were able to drive the process for good set-point tracking and disturbance rejection. The approximate model predictive control (MPC) was slightly faster in response and achieved its control objective in much lower computation time.

AB - The control of liquid-liquid extraction processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. Traditional linear control schemes may have limited performance when applied in situations involving unknown process time delays, loop interactions, and processes with unknown order such as the extraction process itself. The objective of this work is to present a comparative study for the application of a nonlinear model predictive control technique for the control of an agitated type extractor as compared to an approximate nonlinear one. The process model used in the two control algorithms is based on a neural network approach. The implementation of these two algorithms covers the performance of the control system for the servo as well as regulatory control of the column. Both controllers were able to drive the process for good set-point tracking and disturbance rejection. The approximate model predictive control (MPC) was slightly faster in response and achieved its control objective in much lower computation time.

KW - Approximate predictive control

KW - Extraction control

KW - Model predictive control

KW - Neural networks

KW - Scheibel column

UR - http://www.scopus.com/inward/record.url?scp=33646361853&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646361853&partnerID=8YFLogxK

U2 - 10.1080/07366290500464326

DO - 10.1080/07366290500464326

M3 - Article

VL - 24

SP - 227

EP - 250

JO - Solvent Extraction and Ion Exchange

JF - Solvent Extraction and Ion Exchange

SN - 0736-6299

IS - 2

ER -