Change detection of the coastal zone east of the Nile Delta using remote sensing

H. M. El-Asmar, M. E. Hereher

Research output: Contribution to journalArticlepeer-review

112 Citations (SciVal)


The coastal zone of the Nile Delta is a promising area for energy resources and industrial activities. It also contains important wetland ecosystems. This coastal area witnessed several changes during the last century. A set of four satellite images from the multi-spectral scanner (MSS), thematic mapper (TM) and Systeme Pour l'Observation de la Terre (SPOT) sensors were utilized in order to estimate the spatio-temporal changes that occurred in the coastal zone between Damietta Nile branch and Port-Said between 1973 and 2007. Image processing applied in this study included geometric rectification; atmospheric correction; on-screen shoreline digitizing of the 1973 (MSS) and 2007 (SPOT) images for tracking the shoreline position between Damietta promontory and Port-Said; and water index approach for quantifying Manzala lagoon surface area change using 1973 (MSS), 1984 (TM) and 2003 (TM) images. Results showed that coastal erosion was severe near Damietta promontory and decreased eastward, however, accretion was observed near Port-Said. About 50% of the coastal strip was under erosion and 13% was under accretion. In addition, a remarkable decline (34.5%) of the Manzala lagoon surface area was estimated. These changes were attributed mainly to the control of the River Nile flooding and the land use change by anthropogenic activities.

Original languageEnglish
Pages (from-to)769-777
Number of pages9
JournalEnvironmental Earth Sciences
Issue number4
Publication statusPublished - Feb 2011
Externally publishedYes


  • Change detection
  • Nile Delta
  • Remote sensing

ASJC Scopus subject areas

  • Global and Planetary Change
  • Environmental Chemistry
  • Water Science and Technology
  • Soil Science
  • Pollution
  • Geology
  • Earth-Surface Processes


Dive into the research topics of 'Change detection of the coastal zone east of the Nile Delta using remote sensing'. Together they form a unique fingerprint.

Cite this