Bioremediation of copper using indigenous fungi Aspergillus species isolated from an abandoned copper mine soil

Thenmozhi Murugaian Palanivel, Bernhard Pracejus, Luís A.B. Novo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Bioremediation of mining soils using metal tolerant fungi is widely considered as a promising cost-effective and ecofriendly approach. This study assessed the copper removal efficiency and bioaccumulation ability of the indigenous species Aspergillus hiratsukae LF1 and Aspergillus terreus LF2 isolated from the soils of an abandoned copper mine in Oman. Nutrient medium containing five different Cu (II) levels (0 – control, 100, 200, 300 and 500 mg/L) was employed for assessing both parameters. The removal efficiency from nutrient medium (100–500 mg Cu per L) ranged from 57% to 21% for A. hiratsukae LF1, and from 69% to 24% for A. terreus LF2. A. hiratsukae LF1 and A. terreus LF2 accumulated a maximum of 4.63 and 5.95 mg Cu/g,espectively, at 500 mg/L of Cu (II) concentration. The compositional analysis of extracellular polymeric substances excreted by both species revealed a hormetic response by A. hiratsukae LF1 at 100 mg/L; whereas increasing media Cu levels induced carbohydrates production in A. terreus LF2. These results hint at the involvement of carbohydrates in the Cu-tolerance mechanism of the latter. Copper accumulation in both species was further demonstrated through scanning electron microscopy and energy dispersive spectrometry. In line with the pertaining literature, our results are somewhat inconclusive concerning whether proteins or carbohydrates play a more pivotal role in copper complexation in both species; yet, FTIR analysis showed the participation of different functional groups in Cu sorption. Overall, although additional research is required to advance the knowledge about both Aspergillus species, our findings suggest that A. terreus LF2 presents greater promise for copper bioremediation due to enhanced tolerance and accumulation capacity.

Original languageEnglish
Article number137688
JournalChemosphere
Volume314
DOIs
Publication statusPublished - Feb 1 2023
Externally publishedYes

Keywords

  • Aspergillus sp
  • Bioaccumulation
  • Copper
  • Fungi
  • Mine soil
  • Biodegradation, Environmental
  • Soil Pollutants/analysis
  • Copper/analysis
  • Soil/chemistry
  • Aspergillus/metabolism
  • Fungi/metabolism

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • General Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Cite this