Asymmetry of Convolution Norms on Lie Groups

A. H. Dooley, Sanjiv Kumar Gupta, Fulvio Ricci

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We prove that on most connected non-commutative Lie groups there exists a convolution operator which is bounded on L p but unbounded on L q for every q not belonging to the interval with endpoints 2 and p. Furthermore, the kernel of such an operator can be supported on an arbitrary neighbourhood of the identity.

Original languageEnglish
Pages (from-to)399-416
Number of pages18
JournalJournal of Functional Analysis
Volume174
Issue number2
DOIs
Publication statusPublished - Jul 10 2000

ASJC Scopus subject areas

  • Analysis

Fingerprint Dive into the research topics of 'Asymmetry of Convolution Norms on Lie Groups'. Together they form a unique fingerprint.

  • Cite this