TY - JOUR
T1 - Antifibrotic and tumor microenvironment modulating effect of date palm fruit (Phoenix dactylifera L.) extracts in pancreatic cancer
AU - Al Alawi, Reem
AU - Alhamdani, Mohamed Saiel Saeed
AU - Hoheisel, Jörg D.
AU - Baqi, Younis
N1 - Funding Information:
This work was supported by Sultan Qaboos University (SQU) grant ( SR/SCI/CHEM/15/01 ) and the Arab-German Young Academy of Sciences and Humanities (AGYA) grants ( TP_2018_08 & TP_2019_23 ).
Publisher Copyright:
© 2019 The Authors
PY - 2020/1
Y1 - 2020/1
N2 - Date palm fruit (Phoenix dactylifera L.) is an endemic functional food, with great nutritional and economic importance due to its phytochemical compositions. The microenvironment of pancreatic cancer consists of cellular and acellular components, including fibroblasts, myofibroblasts, pancreatic stellate cells (PSCs), immune cells, blood vessels, extracellular matrix (ECM) and soluble proteins, such as cytokines and growth factors. The ECM represents a physical barrier that protects the tumor cell from active therapeutic compounds. In this study, four different solvents; water, ethanol, acetone, and ethyl acetate have been used to extract natural products from date palm fruit using a maceration method. The prepared extracts were investigated for antifibrotic (expression of fibronectin-1 and alpha-smooth muscle actin) and antiproliferative activity in tumor necrosis factor (TNF) stimulated PSCs in vitro. Based on the pharmacological test results, the ethyl acetate extract was subsequently partitioned into nine fractions based on polarity using silica gel column chromatography. These nine collective fractions were further evaluated for their activity. Ethanol, ethyl acetate and acetone, but not water extract significantly reduced PSC proliferation (p < 0.05). Date fruit fractions reduced fibrosis, decreased PSC activity and reversed the PSCs’ fibrotic phenotype. The findings suggest a new approach for targeting pancreatic cancer through the modulation of PSC activity, thereby possibly enhancing the effect of known anticancer drugs. Moreover, date palm fruit appears to have chemopreventive activity protecting from pancreatic and probably other types of cancer, and thereby might be useful candidate to the pharmaceutical and nutraceutical industries in the development of natural compound-based industrial anticancer product.
AB - Date palm fruit (Phoenix dactylifera L.) is an endemic functional food, with great nutritional and economic importance due to its phytochemical compositions. The microenvironment of pancreatic cancer consists of cellular and acellular components, including fibroblasts, myofibroblasts, pancreatic stellate cells (PSCs), immune cells, blood vessels, extracellular matrix (ECM) and soluble proteins, such as cytokines and growth factors. The ECM represents a physical barrier that protects the tumor cell from active therapeutic compounds. In this study, four different solvents; water, ethanol, acetone, and ethyl acetate have been used to extract natural products from date palm fruit using a maceration method. The prepared extracts were investigated for antifibrotic (expression of fibronectin-1 and alpha-smooth muscle actin) and antiproliferative activity in tumor necrosis factor (TNF) stimulated PSCs in vitro. Based on the pharmacological test results, the ethyl acetate extract was subsequently partitioned into nine fractions based on polarity using silica gel column chromatography. These nine collective fractions were further evaluated for their activity. Ethanol, ethyl acetate and acetone, but not water extract significantly reduced PSC proliferation (p < 0.05). Date fruit fractions reduced fibrosis, decreased PSC activity and reversed the PSCs’ fibrotic phenotype. The findings suggest a new approach for targeting pancreatic cancer through the modulation of PSC activity, thereby possibly enhancing the effect of known anticancer drugs. Moreover, date palm fruit appears to have chemopreventive activity protecting from pancreatic and probably other types of cancer, and thereby might be useful candidate to the pharmaceutical and nutraceutical industries in the development of natural compound-based industrial anticancer product.
KW - Date palm fruit
KW - Fibrosis
KW - Pancreatic cancer
KW - Pancreatic stellate cells
KW - Phoenix dactylifera L.
KW - Tumor microenvironment
UR - http://www.scopus.com/inward/record.url?scp=85074029335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074029335&partnerID=8YFLogxK
U2 - 10.1016/j.biopha.2019.109522
DO - 10.1016/j.biopha.2019.109522
M3 - Article
C2 - 31675539
AN - SCOPUS:85074029335
SN - 0753-3322
VL - 121
JO - Biomedicine and Pharmacotherapy
JF - Biomedicine and Pharmacotherapy
M1 - 109522
ER -