Antiferromagnetic iridium-manganese intermediate layers for perpendicular recording media (invited)

Kumar Srinivasan, S. N. Piramanayagam, Rachid Sbiaa, Yew Seng Kay, Hang Khume Tan, Seng Kai Wong

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Current generation of cobalt-oxide-based perpendicular magnetic recording media uses single or dual ruthenium intermediate layers in order to grow crystallographically textured, and magnetically isolated granular media. In this work, the potential advantages of an antiferromagnetic iridium-manganese intermediate layer directly under the recording layer are highlighted. Owing to its close lattice matching with hexagonal cobalt, iridium-manganese which has the L 12, or AuCu3 -type crystal structure, can support the heteroepitaxial growth of the cobalt-based recording layer. In one of the media schemes described here, (111) textured iridium-manganese thin film was grown on 7.5 nm thick ruthenium layer. On the iridium-manganese as segregation layer, the Co-oxide-based magnetic recording layer showed perpendicular texture with Δ θ50 below 4°, coercivity of over 4000 Oe alongside magnetic exchange decoupling, average grain sizes of 6 nm with distributions under 14%, and improved thermal stability. Measurements of the anisotropy constant did not show any significant change and even an IrMn capping layer was observed to improve the thermal stability. The possible mechanisms through which the IrMn layer could affect the thermal stability are hypothesized. The initial layers of the magnetic recording layer on IrMn segregation layers also showed exchange-decoupled and segregated grains, which is unlike that observed on Ru segregation layers. In a second media scheme, (111) textured iridium-manganese thin film was grown on a crystalline soft magnetic underlayer belonging on top of amorphous soft underlayers. In this scheme, partial pinning of the soft underlayer due to exchange-bias interaction with the IrMn layer was observed. This scheme offers the possibility to reduce the intermediate layer thickness, thus improve media writability, and with further optimization, could potentially facilitate the approach toward 1 Tbits/in.2.

Original languageEnglish
Article number07B738
JournalJournal of Applied Physics
Volume105
Issue number7
DOIs
Publication statusPublished - 2009

Fingerprint

iridium
manganese
recording
magnetic recording
thermal stability
ruthenium
cobalt
cobalt oxides
thin films
decoupling
coercivity
textures

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Antiferromagnetic iridium-manganese intermediate layers for perpendicular recording media (invited). / Srinivasan, Kumar; Piramanayagam, S. N.; Sbiaa, Rachid; Kay, Yew Seng; Tan, Hang Khume; Wong, Seng Kai.

In: Journal of Applied Physics, Vol. 105, No. 7, 07B738, 2009.

Research output: Contribution to journalArticle

Srinivasan, Kumar ; Piramanayagam, S. N. ; Sbiaa, Rachid ; Kay, Yew Seng ; Tan, Hang Khume ; Wong, Seng Kai. / Antiferromagnetic iridium-manganese intermediate layers for perpendicular recording media (invited). In: Journal of Applied Physics. 2009 ; Vol. 105, No. 7.
@article{9675b252779949b2875e56ef36ac71b1,
title = "Antiferromagnetic iridium-manganese intermediate layers for perpendicular recording media (invited)",
abstract = "Current generation of cobalt-oxide-based perpendicular magnetic recording media uses single or dual ruthenium intermediate layers in order to grow crystallographically textured, and magnetically isolated granular media. In this work, the potential advantages of an antiferromagnetic iridium-manganese intermediate layer directly under the recording layer are highlighted. Owing to its close lattice matching with hexagonal cobalt, iridium-manganese which has the L 12, or AuCu3 -type crystal structure, can support the heteroepitaxial growth of the cobalt-based recording layer. In one of the media schemes described here, (111) textured iridium-manganese thin film was grown on 7.5 nm thick ruthenium layer. On the iridium-manganese as segregation layer, the Co-oxide-based magnetic recording layer showed perpendicular texture with Δ θ50 below 4°, coercivity of over 4000 Oe alongside magnetic exchange decoupling, average grain sizes of 6 nm with distributions under 14{\%}, and improved thermal stability. Measurements of the anisotropy constant did not show any significant change and even an IrMn capping layer was observed to improve the thermal stability. The possible mechanisms through which the IrMn layer could affect the thermal stability are hypothesized. The initial layers of the magnetic recording layer on IrMn segregation layers also showed exchange-decoupled and segregated grains, which is unlike that observed on Ru segregation layers. In a second media scheme, (111) textured iridium-manganese thin film was grown on a crystalline soft magnetic underlayer belonging on top of amorphous soft underlayers. In this scheme, partial pinning of the soft underlayer due to exchange-bias interaction with the IrMn layer was observed. This scheme offers the possibility to reduce the intermediate layer thickness, thus improve media writability, and with further optimization, could potentially facilitate the approach toward 1 Tbits/in.2.",
author = "Kumar Srinivasan and Piramanayagam, {S. N.} and Rachid Sbiaa and Kay, {Yew Seng} and Tan, {Hang Khume} and Wong, {Seng Kai}",
year = "2009",
doi = "10.1063/1.3080886",
language = "English",
volume = "105",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "7",

}

TY - JOUR

T1 - Antiferromagnetic iridium-manganese intermediate layers for perpendicular recording media (invited)

AU - Srinivasan, Kumar

AU - Piramanayagam, S. N.

AU - Sbiaa, Rachid

AU - Kay, Yew Seng

AU - Tan, Hang Khume

AU - Wong, Seng Kai

PY - 2009

Y1 - 2009

N2 - Current generation of cobalt-oxide-based perpendicular magnetic recording media uses single or dual ruthenium intermediate layers in order to grow crystallographically textured, and magnetically isolated granular media. In this work, the potential advantages of an antiferromagnetic iridium-manganese intermediate layer directly under the recording layer are highlighted. Owing to its close lattice matching with hexagonal cobalt, iridium-manganese which has the L 12, or AuCu3 -type crystal structure, can support the heteroepitaxial growth of the cobalt-based recording layer. In one of the media schemes described here, (111) textured iridium-manganese thin film was grown on 7.5 nm thick ruthenium layer. On the iridium-manganese as segregation layer, the Co-oxide-based magnetic recording layer showed perpendicular texture with Δ θ50 below 4°, coercivity of over 4000 Oe alongside magnetic exchange decoupling, average grain sizes of 6 nm with distributions under 14%, and improved thermal stability. Measurements of the anisotropy constant did not show any significant change and even an IrMn capping layer was observed to improve the thermal stability. The possible mechanisms through which the IrMn layer could affect the thermal stability are hypothesized. The initial layers of the magnetic recording layer on IrMn segregation layers also showed exchange-decoupled and segregated grains, which is unlike that observed on Ru segregation layers. In a second media scheme, (111) textured iridium-manganese thin film was grown on a crystalline soft magnetic underlayer belonging on top of amorphous soft underlayers. In this scheme, partial pinning of the soft underlayer due to exchange-bias interaction with the IrMn layer was observed. This scheme offers the possibility to reduce the intermediate layer thickness, thus improve media writability, and with further optimization, could potentially facilitate the approach toward 1 Tbits/in.2.

AB - Current generation of cobalt-oxide-based perpendicular magnetic recording media uses single or dual ruthenium intermediate layers in order to grow crystallographically textured, and magnetically isolated granular media. In this work, the potential advantages of an antiferromagnetic iridium-manganese intermediate layer directly under the recording layer are highlighted. Owing to its close lattice matching with hexagonal cobalt, iridium-manganese which has the L 12, or AuCu3 -type crystal structure, can support the heteroepitaxial growth of the cobalt-based recording layer. In one of the media schemes described here, (111) textured iridium-manganese thin film was grown on 7.5 nm thick ruthenium layer. On the iridium-manganese as segregation layer, the Co-oxide-based magnetic recording layer showed perpendicular texture with Δ θ50 below 4°, coercivity of over 4000 Oe alongside magnetic exchange decoupling, average grain sizes of 6 nm with distributions under 14%, and improved thermal stability. Measurements of the anisotropy constant did not show any significant change and even an IrMn capping layer was observed to improve the thermal stability. The possible mechanisms through which the IrMn layer could affect the thermal stability are hypothesized. The initial layers of the magnetic recording layer on IrMn segregation layers also showed exchange-decoupled and segregated grains, which is unlike that observed on Ru segregation layers. In a second media scheme, (111) textured iridium-manganese thin film was grown on a crystalline soft magnetic underlayer belonging on top of amorphous soft underlayers. In this scheme, partial pinning of the soft underlayer due to exchange-bias interaction with the IrMn layer was observed. This scheme offers the possibility to reduce the intermediate layer thickness, thus improve media writability, and with further optimization, could potentially facilitate the approach toward 1 Tbits/in.2.

UR - http://www.scopus.com/inward/record.url?scp=65249189219&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65249189219&partnerID=8YFLogxK

U2 - 10.1063/1.3080886

DO - 10.1063/1.3080886

M3 - Article

VL - 105

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 7

M1 - 07B738

ER -