An investigation of three-phase counter-current flow using X-ray computerized tomography and neuro-simulation modeling

M. Al-Wadahi*, A. S. Grader, T. Ertekin

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

This work examines the physics of three-phase counter-current fluid flow driven by gravity and capillary transport mechanisms through a combination of experimental measurements and neuro-simulation modeling. There have been only a few scientific reports in the literature addressing counter-current flow phenomena, especially under three-phase flow conditions. Counter-current flow driven by gravity and capillarity may occur in fractured reservoirs (both in matrix and fractures), in solution gas drive and gas cap reservoirs with high vertical permeability, and in some water-flooding operations. Three-phase flow experiments were conducted with an idealized system and the temporal and spatial saturation distributions during counter-current flow periods were acquired using computerized tomography. The experimental results were simulated using a conventional reservoir simulator. The simulation results provided the basis for training an artificial neural network through which the best relative permeability and capillary pressure functions that match the experimental data were obtained using a pattern recognition protocol.

Original languageEnglish
Pages (from-to)469-480
Number of pages12
JournalSPE Reservoir Engineering (Society of Petroleum Engineers)
Issue numberB
Publication statusPublished - 2000
Externally publishedYes
EventProceedings of the 2000 SPE Annual Technical COnference and Exhibition on Drilling and Completion - Dallas, TX, United States
Duration: Oct 1 2000Oct 4 2000

ASJC Scopus subject areas

  • Process Chemistry and Technology

Fingerprint

Dive into the research topics of 'An investigation of three-phase counter-current flow using X-ray computerized tomography and neuro-simulation modeling'. Together they form a unique fingerprint.

Cite this