TY - JOUR
T1 - Active CO 2 reservoir management for carbon storage
T2 - Analysis of operational strategies to relieve pressure buildup and improve injectivity
AU - Buscheck, Thomas A.
AU - Sun, Yunwei
AU - Chen, Mingjie
AU - Hao, Yue
AU - Wolery, Thomas J.
AU - Bourcier, William L.
AU - Court, Benjamin
AU - Celia, Michael A.
AU - Julio Friedmann, S.
AU - Aines, Roger D.
PY - 2012/1
Y1 - 2012/1
N2 - For industrial-scale CO 2 injection in saline formations, pressure buildup can limit storage capacity and security. Active CO 2 Reservoir Management (ACRM) combines brine production with CO 2 injection to relieve pressure buildup, increase injectivity, manipulate CO 2 migration, and constrain brine leakage. By limiting pressure buildup, in magnitude, spatial extent, and duration, ACRM can reduce CO 2 and brine leakage, minimize interactions with neighboring subsurface activities, allowing independent assessment and permitting, reduce the Area of Review and required duration of post-injection monitoring, and reduce cost and risk. ACRM provides benefits to reservoir management at the cost of extracting brine. The added cost must be offset by the added benefits to the storage operation and/or by creating new, valuable uses that can reduce the total added cost. Actual net cost is expected to be site specific, requiring detailed analysis that is beyond the scope of this paper, which focuses on the benefits to reservoir management. We investigate operational strategies for achieving an effective tradeoff between pressure relief/improved-injectivity and delayed CO 2 breakthrough at brine producers. For vertical wells, an injection-only strategy is compared to a pressure-management strategy with brine production from a double-ring 9-spot pattern. Brine production allows injection to be steadily ramped up while staying within the pressure-buildup target, while injection-only requires a gradual ramp-down. Injector/producer horizontal-well pairs were analyzed for a range of well spacings, storage-formation thickness and area, level and dipping formations, and for homogeneous and heterogeneous permeability. When the producer is downdip of the injector, the combined influence of buoyancy and heterogeneity can delay CO 2 breakthrough. Both vertical and horizontal wells can achieve pressure relief and improved CO 2 injectivity, while delaying CO 2 breakthrough. Pressure buildup and CO 2 breakthrough are sensitive to storage-formation permeability and insensitive to all other hydrologic parameters except caprock-seal permeability, which only affects pressure buildup for injection-only cases.
AB - For industrial-scale CO 2 injection in saline formations, pressure buildup can limit storage capacity and security. Active CO 2 Reservoir Management (ACRM) combines brine production with CO 2 injection to relieve pressure buildup, increase injectivity, manipulate CO 2 migration, and constrain brine leakage. By limiting pressure buildup, in magnitude, spatial extent, and duration, ACRM can reduce CO 2 and brine leakage, minimize interactions with neighboring subsurface activities, allowing independent assessment and permitting, reduce the Area of Review and required duration of post-injection monitoring, and reduce cost and risk. ACRM provides benefits to reservoir management at the cost of extracting brine. The added cost must be offset by the added benefits to the storage operation and/or by creating new, valuable uses that can reduce the total added cost. Actual net cost is expected to be site specific, requiring detailed analysis that is beyond the scope of this paper, which focuses on the benefits to reservoir management. We investigate operational strategies for achieving an effective tradeoff between pressure relief/improved-injectivity and delayed CO 2 breakthrough at brine producers. For vertical wells, an injection-only strategy is compared to a pressure-management strategy with brine production from a double-ring 9-spot pattern. Brine production allows injection to be steadily ramped up while staying within the pressure-buildup target, while injection-only requires a gradual ramp-down. Injector/producer horizontal-well pairs were analyzed for a range of well spacings, storage-formation thickness and area, level and dipping formations, and for homogeneous and heterogeneous permeability. When the producer is downdip of the injector, the combined influence of buoyancy and heterogeneity can delay CO 2 breakthrough. Both vertical and horizontal wells can achieve pressure relief and improved CO 2 injectivity, while delaying CO 2 breakthrough. Pressure buildup and CO 2 breakthrough are sensitive to storage-formation permeability and insensitive to all other hydrologic parameters except caprock-seal permeability, which only affects pressure buildup for injection-only cases.
KW - Brine production
KW - CO capture
KW - CO capture and storage
KW - CO migration
KW - Injectivity
KW - Pressure management
KW - Utilization and storage
UR - http://www.scopus.com/inward/record.url?scp=84855462914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855462914&partnerID=8YFLogxK
U2 - 10.1016/j.ijggc.2011.11.007
DO - 10.1016/j.ijggc.2011.11.007
M3 - Article
AN - SCOPUS:84855462914
VL - 6
SP - 230
EP - 245
JO - International Journal of Greenhouse Gas Control
JF - International Journal of Greenhouse Gas Control
SN - 1750-5836
ER -