Abstract
In this paper, a control design synthesis is presented for processes modeled by a first-order time-varying lag with a timevarying delay. The basis of the proposed control method is a feedforward-feedback control system in which its stability, both in continuous and discrete time domains, is first proved in the absence of the time delay. A predictive model with an adaptive horizon is then introduced to address the effect of the timevarying delay. The system's closed-loop response is demonstrated for fueling control in lean-burn gasoline spark ignition engines with varying transport and combustion delays. The developed methodology is validated on a Ford F-150 SI lean-burn engine model with large time-varying delay in the control loop.
Original language | English |
---|---|
Title of host publication | Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems |
Publisher | American Society of Mechanical Engineers |
Volume | 3 |
ISBN (Electronic) | 9780791857267 |
DOIs | |
Publication status | Published - 2015 |
Event | ASME 2015 Dynamic Systems and Control Conference, DSCC 2015 - Columbus, United States Duration: Oct 28 2015 → Oct 30 2015 |
Other
Other | ASME 2015 Dynamic Systems and Control Conference, DSCC 2015 |
---|---|
Country/Territory | United States |
City | Columbus |
Period | 10/28/15 → 10/30/15 |
ASJC Scopus subject areas
- Industrial and Manufacturing Engineering
- Mechanical Engineering
- Control and Systems Engineering