A highly porous nanocomposite (Fe3O4@BFR) for the removal of toxic Cd(II) ions from aqueous environment: Adsorption modelling and regeneration study

Mu Naushad, Tansir Ahamad, Khalid A. Al-Ghanim, Ala'a H. Al-Muhtaseb, Gaber E. Eldesoky*, Azmat Ali Khan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

Adsorption is a commonly used technique for the removal of pollutants from wastewaters. In this study, a magnetic adsorbent (Fe3O4@BFR) was prepared using biuret-formaldehyde pre polymeric resin (BFR) and Fe3O4 nanoparticles. The adsorption ability of Fe3O4@BFR was investigated using Cd(II) metal ion as a typical pollutant. Adsorption of Cd(II) was studied as a function of temperature (25–45 °C), pH (2–7), time (5–300 min) and initial Cd(II) concentration (25–75 mg L−1). The morphology, structure and magnetic character of Fe3O4@BFR nanocomposite were explored using X-ray powder diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm, scanning electron microscopy and VSM analyses. Adsorption kinetics, isotherms and thermodynamics studies were also carried out. The experimental adsorption data followed the pseudo-first-order kinetic model and Langmuir isotherm with a maximum adsorption capacity of 92.6 mg g−1. The reusability of Fe3O4@BFR was tested and still over 70% Cd(II) was removed after three cycles. In conclusion, Fe3O4@BFR nanocomposite showed enormous potential for remediating industrial wastewater polluted by toxic Cd(II) metal ion.

Original languageEnglish
Pages (from-to)179-185
Number of pages7
JournalComposites Part B: Engineering
Volume172
DOIs
Publication statusPublished - Sept 1 2019

Keywords

  • Adsorbent
  • Adsorption
  • Cadmium
  • Magnetic
  • Nanocomposite
  • Toxic metal

ASJC Scopus subject areas

  • Ceramics and Composites
  • Mechanics of Materials
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'A highly porous nanocomposite (Fe3O4@BFR) for the removal of toxic Cd(II) ions from aqueous environment: Adsorption modelling and regeneration study'. Together they form a unique fingerprint.

Cite this