### Abstract

We characterize both the continuous and finite element approximate solution of noncoercive Hamilton-Jacobi-Bellman equation as fixed points of contractions. We also derive L^{∞}-error estimate of the approximation.

Original language | English |
---|---|

Pages (from-to) | 261-269 |

Number of pages | 9 |

Journal | Applied Mathematics and Information Sciences |

Volume | 4 |

Issue number | 2 |

Publication status | Published - 2010 |

### Fingerprint

### Keywords

- Contraction
- Error estimate
- Finite element
- HJB equations

### ASJC Scopus subject areas

- Applied Mathematics
- Numerical Analysis
- Analysis
- Computer Science Applications
- Computational Theory and Mathematics

### Cite this

**A contraction approach for noncoercive hamilton-jacobi-bellman equations.** / Boulbrachene, Messaoud.

Research output: Contribution to journal › Article

*Applied Mathematics and Information Sciences*, vol. 4, no. 2, pp. 261-269.

}

TY - JOUR

T1 - A contraction approach for noncoercive hamilton-jacobi-bellman equations

AU - Boulbrachene, Messaoud

PY - 2010

Y1 - 2010

N2 - We characterize both the continuous and finite element approximate solution of noncoercive Hamilton-Jacobi-Bellman equation as fixed points of contractions. We also derive L∞-error estimate of the approximation.

AB - We characterize both the continuous and finite element approximate solution of noncoercive Hamilton-Jacobi-Bellman equation as fixed points of contractions. We also derive L∞-error estimate of the approximation.

KW - Contraction

KW - Error estimate

KW - Finite element

KW - HJB equations

UR - http://www.scopus.com/inward/record.url?scp=84873468561&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84873468561&partnerID=8YFLogxK

M3 - Article

VL - 4

SP - 261

EP - 269

JO - Applied Mathematics and Information Sciences

JF - Applied Mathematics and Information Sciences

SN - 1935-0090

IS - 2

ER -