Flexural Behavior Of Frp Bars After Exposure To Elevated Temperatures

Sherif E.El Gama*, Abdulrahman M. Al-Fahdi, Mohammed Meddah, Abdullah Al-Saidy, Kazi Md Abu Sohel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

This study investigates the flexural behavior of fibre-reinforced polymer (FRP) bars after being subjected to different levels of elevated temperatures (100, 200 and 300°C). Three types of glass FRP bars (ribbed, sand coated, and helically wrapped) and one type of carbon FRP bars (sand coated) were used in this study. Two testing scenarios were used: (a) testing specimens immediately after heating and (b) keeping specimens to cool down to room temperature before testing. Test results showed that as the temperature increased the flexural strength and modulus of the tested FRP bars decreased. At temperatures higher than the glass transition temperature (Tg), significant flexural strength and modulus losses were recorded. Smaller diameter bars showed better residual flexural strength and modulus than the larger diameter bars. The immediately tested bars showed significant strength and modulus losses compared to bars tested after cooling. Different types of GFRP bars showed comparable results. However, the helically wrapped bars showed the highest flexural strength losses (37 and 60%) while the sand coated bars showed the lowest losses (29 and 39%) after exposure to 200 and 300℃, respectively. The carbon FRP bars showed residual flexural strengths comparable to those recorded for the GFRP bars; however, they showed lower residual flexural modulus after being subjected to 200 and 300.

Translated title of the contributionسلوك الإنثناء لقضبان البولیمر المقوى بالألیاف بعد تعرضھا لدرجات حرارة مرتفعة
Original languageEnglish
Pages (from-to)12-19
Number of pages8
JournalJournal of Engineering Research
Volume18
Issue number1
DOIs
Publication statusPublished - 2021

Keywords

  • Bar diameters
  • Carbon FRP
  • Elevated temperatures
  • FRP
  • Fibre-reinforced polymer bars
  • Flexural modulus
  • Flexural strength
  • Glass FRP

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Flexural Behavior Of Frp Bars After Exposure To Elevated Temperatures'. Together they form a unique fingerprint.

Cite this