Temperature variation effects on stochastic characteristics for low-cost MEMS-based inertial sensor error

M. El-Diasty*, A. El-Rabbany, S. Pagiatakis

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

61 اقتباسات (Scopus)


We examine the effect of varying the temperature points on MEMS inertial sensors' noise models using Allan variance and least-squares spectral analysis (LSSA). Allan variance is a method of representing root-mean-square random drift error as a function of averaging times. LSSA is an alternative to the classical Fourier methods and has been applied successfully by a number of researchers in the study of the noise characteristics of experimental series. Static data sets are collected at different temperature points using two MEMS-based IMUs, namely MotionPakII and Crossbow AHRS300CC. The performance of the two MEMS inertial sensors is predicted from the Allan variance estimation results at different temperature points and the LSSA is used to study the noise characteristics and define the sensors' stochastic model parameters. It is shown that the stochastic characteristics of MEMS-based inertial sensors can be identified using Allan variance estimation and LSSA and the sensors' stochastic model parameters are temperature dependent. Also, the Kaiser window FIR low-pass filter is used to investigate the effect of de-noising stage on the stochastic model. It is shown that the stochastic model is also dependent on the chosen cut-off frequency.

اللغة الأصليةEnglish
الصفحات (من إلى)3321-3328
عدد الصفحات8
دوريةMeasurement Science and Technology
مستوى الصوت18
رقم الإصدار11
المعرِّفات الرقمية للأشياء
حالة النشرPublished - نوفمبر 1 2007

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3105???
  • ???subjectarea.asjc.2200.2201???
  • ???subjectarea.asjc.2600.2604???

قم بذكر هذا