ملخص
We show that the minimal k such that μk ∈ L1 (SU(n)) for all central, continuous measures μ on SU(n) is k = n. We do this by exhibiting an element g ∈ SU(n) for which the (n - 1)-fold product of its conjugacy class has zero Haar measure. This ensures that if μg is the corresponding orbital measure supported on the conjugacy class, then μgn-1 is singular to L1.
اللغة الأصلية | English |
---|---|
رقم المقال | BF02764072 |
الصفحات (من إلى) | 93-107 |
عدد الصفحات | 15 |
دورية | Israel Journal of Mathematics |
مستوى الصوت | 130 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | Published - 2002 |
منشور خارجيًا | نعم |
ASJC Scopus subject areas
- ???subjectarea.asjc.2600???