Prediction of pores formation (porosity) in foods during drying: Generic models by the use of hybrid neural network

M. A. Hussain, M. Shafiur Rahman, C. W. Ng

نتاج البحث: المساهمة في مجلةمراجعة النظراء

100 اقتباسات (Scopus)

ملخص

General porosity prediction models of food during air-drying have been developed using regression analysis and hybrid neural network techniques. Porosity data of apple, carrot, pear, potato, starch, onion, lentil, garlic, calamari, squid, and celery were used to develop the model using 286 data points obtained from the literature. The best generic model was developed based on four inputs as temperature of drying, moisture content, initial porosity, and product type. The error for predicting porosity using the best generic model developed is 0.58%, thus identified as an accurate prediction model.

اللغة الأصليةEnglish
الصفحات (من إلى)239-248
عدد الصفحات10
دوريةJournal of Food Engineering
مستوى الصوت51
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرPublished - فبراير 2002

ASJC Scopus subject areas

  • ???subjectarea.asjc.1100.1106???

بصمة

أدرس بدقة موضوعات البحث “Prediction of pores formation (porosity) in foods during drying: Generic models by the use of hybrid neural network'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا