Numerical study of Fisher's reaction-diffusion equation by the Sinc collocation method

Kamel Al-Khaled*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

77 اقتباسات (Scopus)


Fisher's equation, which describes a balance between linear diffusion and nonlinear reaction or multiplication, is studied numerically by the Sinc collocation method. The derivatives and integrals are replaced by the necessary matrices, and a system of algebraic equations is obtained to approximate solution of the problem. The error in the approximation of the solution is shown to converge at an exponential rate. Numerical examples are given to illustrate the accuracy and the implementation of the method, the results show that any local initial disturbance can propagate with a constant limiting speed when time becomes sufficiently large. Both the limiting wave fronts and the limiting speed are independent of the initial values.

اللغة الأصليةEnglish
الصفحات (من إلى)245-255
عدد الصفحات11
دوريةJournal of Computational and Applied Mathematics
مستوى الصوت137
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرPublished - ديسمبر 15 2001
منشور خارجيًانعم

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2605???
  • ???subjectarea.asjc.2600.2604???


أدرس بدقة موضوعات البحث “Numerical study of Fisher's reaction-diffusion equation by the Sinc collocation method'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا