Multiplication operators and dynamical systems on weighted spaces of vector-valued holomorphic functions on banach spaces

J. S. Manhas*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

ملخص

Let UX be a balanced open subset of a Banach space X. Let V and W be two Nachbin families of weights on UX. Let B(E, F) be the space of all continuous linear operators from a locally convex Haudorff space E into a locally convex Hausdorff space F. Let HV (UX, F) and HW (UX, E) be the weighted locally convex spaces of vector-valued holomorphic functions. In this paper, we investigate the operator-valued maps ψ: UX → B (E,F) which generate multiplication operators and invertible multiplication operators Mψ on the spaces HV (UX, F) and HW (UX, E) for general Nachbin families of weights V and W and for single continuous weights v and w on the open unit ball BX of a Banach space X. A C0-group of multiplication operators and a (linear) dynamical system is also obtained as an application of these operators.

اللغة الأصليةEnglish
الصفحات (من إلى)1075-1086
عدد الصفحات12
دوريةInternational Journal of Mathematical Analysis
مستوى الصوت5
رقم الإصدار21-24
حالة النشرPublished - 2011

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600???

بصمة

أدرس بدقة موضوعات البحث “Multiplication operators and dynamical systems on weighted spaces of vector-valued holomorphic functions on banach spaces'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا