Identifying patient readmission subtypes from unplanned readmissions to hospitals in Hong Kong: A cluster analysis

Moon Fai Chan, Frances K.Y. Wong*, Katherine Chang, Susan Chow, Loretta Chung, Wai Man Lee, Rance Lee

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

7 اقتباسات (Scopus)

ملخص

It has been conjectured with regard to patient readmission patterns that there might be significant differences in patient characteristics, need factors, enabling resources, and health behavior. The aim of this study was to identify the profiles of readmitted patients in Hong Kong (n = 120) based on their predisposing characteristics, needs, health behavior, and enabling resources. All the readmitted patients were recruited to the study in three hospitals from 2003 to 2005. A cluster analysis yielded three clusters: Clusters 1, 2, and 3 constituted 27.5% (n = 33), 27.5% (n = 33), and 45.0% (n = 54) of the total sample, respectively. The study results show that community nurse services do affect the rate at which patients are admitted to hospital for a second time. The findings might help by providing important information that will enable health-care policy-makers to identify strategies to target a specific group of patients in the hope of reducing its readmission rate.

اللغة الأصليةEnglish
الصفحات (من إلى)37-44
عدد الصفحات8
دوريةNursing and Health Sciences
مستوى الصوت11
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرPublished - 2009
منشور خارجيًانعم

ASJC Scopus subject areas

  • ???subjectarea.asjc.2900???

بصمة

أدرس بدقة موضوعات البحث “Identifying patient readmission subtypes from unplanned readmissions to hospitals in Hong Kong: A cluster analysis'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا