ملخص
600-cell {3, 3, 5} and 120-cell {5, 3, 3} four-dimensional dual polytopes relevant to quasicrystallography have been studied with the quaternionic representation of the Coxeter group W(H4). The maximal subgroups W(SU(5)):Z2 and W(H3) × Z2 of W(H 4) play important roles in the analysis of cell structures of the dual polytopes. In particular, the Weyl-Coxeter group W(SU(4)) is used to determine the tetrahedral cells of the polytope {3, 3, 5}, and the Coxeter group W(H3) is used for the dodecahedral cells of {5, 3, 3}. Using the Lie algebraic techniques in terms of quaternions, we explicitly construct cell structures forming the vertices of the 4D polytopes.
اللغة الأصلية | English |
---|---|
رقم المقال | 013 |
الصفحات (من إلى) | 7633-7642 |
عدد الصفحات | 10 |
دورية | Journal of Physics A: Mathematical and Theoretical |
مستوى الصوت | 40 |
رقم الإصدار | 27 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | Published - يوليو 6 2007 |
ASJC Scopus subject areas
- ???subjectarea.asjc.3100.3109???
- ???subjectarea.asjc.2600.2613???
- ???subjectarea.asjc.2600.2611???
- ???subjectarea.asjc.2600.2610???
- ???subjectarea.asjc.3100???