Galerkin Type Methods for Semilinear Time-Fractional Diffusion Problems

Samir Karaa*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

3 اقتباسات (Scopus)

ملخص

We derive optimal L2-error estimates for semilinear time-fractional subdiffusion problems involving Caputo derivatives in time of order α∈ (0 , 1) , for cases with smooth and nonsmooth initial data. A general framework is introduced allowing a unified error analysis of Galerkin type space approximation methods. The analysis is based on a semigroup type approach and exploits the properties of the inverse of the associated elliptic operator. Completely discrete schemes are analyzed in the same framework using a backward Euler convolution quadrature method in time. Numerical examples including conforming, nonconforming and mixed finite element methods are presented to illustrate the theoretical results.

اللغة الأصليةEnglish
رقم المقال46
دوريةJournal of Scientific Computing
مستوى الصوت83
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرPublished - يونيو 1 2020
منشور خارجيًانعم

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1712???
  • ???subjectarea.asjc.2600.2614???
  • ???subjectarea.asjc.2600.2612???
  • ???subjectarea.asjc.2200???
  • ???subjectarea.asjc.1700.1703???
  • ???subjectarea.asjc.2600.2605???
  • ???subjectarea.asjc.2600.2604???

بصمة

أدرس بدقة موضوعات البحث “Galerkin Type Methods for Semilinear Time-Fractional Diffusion Problems'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا