ملخص
An exact solution to a free-boundary, potential, 2-D flow of a Darcian fluid (mathematically equivalent to flow of a heavy irrotational ideal fluid) past a barrier is obtained by the theory of holomorphic functions. A volume of liquid contaminant contrasting in density with the ambient flowing groundwater makes a lens attached to the stoss or lee side of the barrier. The shape of the interface morphs in response to a pressure-velocity field in the dynamic and static liquid phases. The flow net and interface are plotted from explicit expressions found for the complex potential and complex velocity. As a particular case, we obtain a famous Zhukovsky’s gas-bubble contour belonging to the class of trochoids. Serious caveats for remediation projects and artificial recharge of groundwater are inferred: more intensive descending seepage of ponded surface water through a heterogeneous aquifer may worsen the groundwater quality, contrary to what would occur in homogeneous porous media.
اللغة الأصلية | English |
---|---|
عنوان منشور المضيف | Proceedings of the World Congress on Engineering 2012, WCE 2012 |
المحررون | Len Gelman, Andrew Hunter, A. M. Korsunsky, S. I. Ao, David WL Hukins |
ناشر | Newswood Limited |
الصفحات | 44-47 |
عدد الصفحات | 4 |
مستوى الصوت | 2197 |
رقم المعيار الدولي للكتب (المطبوع) | 9789881925138 |
حالة النشر | Published - 2012 |
الحدث | 2012 World Congress on Engineering, WCE 2012 - London, United Kingdom المدة: يوليو ٤ ٢٠١٢ → يوليو ٦ ٢٠١٢ |
Other
Other | 2012 World Congress on Engineering, WCE 2012 |
---|---|
الدولة/الإقليم | United Kingdom |
المدينة | London |
المدة | ٧/٤/١٢ → ٧/٦/١٢ |
ASJC Scopus subject areas
- ???subjectarea.asjc.1700.1701???