Extra-updates criterion for the limited memory BFGS algorithm for large scale nonlinear optimization

M. Al-Baali*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

4 اقتباسات (Scopus)

ملخص

This paper studies recent modifications of the limited memory BFGS (L-BFGS) method for solving large scale unconstrained optimization problems. Each modification technique attempts to improve the quality of the L-BFGS Hessian by employing (extra) updates in a certain sense. Because at some iterations these updates might be redundant or worsen the quality of this Hessian, this paper proposes an updates criterion to measure this quality. Hence, extra updates are employed only to improve the poor approximation of the L-BFGS Hessian. The presented numerical results illustrate the usefulness of this criterion and show that extra updates improve the performance of the L-BFGS method substantially.

اللغة الأصليةEnglish
الصفحات (من إلى)557-572
عدد الصفحات16
دوريةJournal of Complexity
مستوى الصوت18
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرPublished - 2002

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2602???
  • ???subjectarea.asjc.2600.2613???
  • ???subjectarea.asjc.2600.2612???
  • ???subjectarea.asjc.2600???
  • ???subjectarea.asjc.2600.2606???
  • ???subjectarea.asjc.2600.2604???

بصمة

أدرس بدقة موضوعات البحث “Extra-updates criterion for the limited memory BFGS algorithm for large scale nonlinear optimization'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا