Error Estimates for Approximations of Time-Fractional Biharmonic Equation with Nonsmooth Data

Mariam Al-Maskari, Samir Karaa*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

ملخص

We consider a time-fractional biharmonic equation involving a Caputo derivative in time of fractional order α∈ (0 , 1 ) and a locally Lipschitz continuous nonlinearity. Local and global existence of solutions is discussed and detailed regularity results are provided. A finite element method in space combined with a backward Euler convolution quadrature in time is analyzed. Our objective is to allow initial data of low regularity compared to the number of derivatives occurring in the governing equation. Using a semigroup type approach, error estimates of optimal order are derived for solutions with smooth and nonsmooth initial data. Numerical tests are presented to validate the theoretical results.

اللغة الأصليةEnglish
رقم المقال8
دوريةJournal of Scientific Computing
مستوى الصوت93
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرPublished - أكتوبر 2022

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2614???
  • ???subjectarea.asjc.1700.1712???
  • ???subjectarea.asjc.2600.2612???
  • ???subjectarea.asjc.2200???
  • ???subjectarea.asjc.2600.2605???
  • ???subjectarea.asjc.1700.1703???
  • ???subjectarea.asjc.2600.2604???

قم بذكر هذا