Embedding and global stability in periodic 2-dimensional maps of mixed monotonicity

نتاج البحث: المساهمة في مجلةمراجعة النظراء

ملخص

In this paper, we consider nonautonomous second order difference equations of the form xn+1=F(n,xn,xn−1), where F is p-periodic in its first component, non-decreasing in its second component and non-increasing in its third component. The map F is referred to as periodic of mixed monotonicity, which broadens the notion of maps of mixed monotonicity. We introduce the concept of artificial cycles, and we develop the embedding technique to tackle periodicity and globally attracting cycles in periodic 2-dimensional maps of mixed monotonicity. We present a result on globally attracting cycles and illustrate its application to periodic systems. The first application is a periodic rational difference equation of second order, and the second application is a population model with periodic stocking. In both cases, we prove the existence of a globally attracting cycle.

اللغة الأصليةEnglish
رقم المقال111933
دوريةChaos, Solitons and Fractals
مستوى الصوت157
المعرِّفات الرقمية للأشياء
حالة النشرPublished - أبريل 2022

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3109???
  • ???subjectarea.asjc.2600???
  • ???subjectarea.asjc.3100???
  • ???subjectarea.asjc.2600.2604???

بصمة

أدرس بدقة موضوعات البحث “Embedding and global stability in periodic 2-dimensional maps of mixed monotonicity'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا