Convolution of orbital measures on complex grassmannians

Mahmoud Al-Hashami, Boudjemâa Anchouche

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

2 اقتباسات (Scopus)

ملخص

In [2] and [1], the regularity of the Radon-Nikodym derivative of the convolutions of orbital measures on a compact symmetric space of rank one was studied. The aim of this paper is to extend the results obtained in [1] to the case of complex Grassmannians. More precisely, let M = U/K , where U = SU(p + q) and K = S(U(p)× U(q)), be the complex Grassmannian of a p-plane in Cp+q , p ? q ? 2, a1, ..., ar be r points in U , and consider the convolution product ?a 1 ? ... ? ?ar of the orbital measures ?a1 , ..., ?ar supported on Ka1K, ..., KarK . By a result of Ragozin [10], if r ? dim M, then ?a 1 ? ... ? ?ar is absolutely continuous with respect to the Haar measure of U . The aim of this paper is to investigate the Ck?regularity of the Radon-Nikodym derivative of ?a 1 ? ... ? ?ar with respect to the Haar measure of U . Mathematics Subject Classification 2010: Primary 43A77, 43A90; Secondary 53C35, 28C10.

اللغة الأصليةEnglish
الصفحات (من إلى)695-713
عدد الصفحات19
دوريةJournal of Lie Theory
مستوى الصوت21
رقم الإصدار3
حالة النشرPublished - 2018

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2602???

بصمة

أدرس بدقة موضوعات البحث “Convolution of orbital measures on complex grassmannians'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا