Convergence and performance of iterative methods for solving variable coefficient convection-diffusion equation with a fourth-order compact difference scheme

S. Karaa*, Jun Zhang

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

24 اقتباسات (Scopus)

ملخص

We conduct convergence analysis on some classical stationary iterative methods for solving the two-dimensional variable coefficient convection-diffusion equation discretized by a fourth-order compact difference scheme. Several conditions are formulated under which the coefficient matrix is guaranteed to be an M-matrix. We further investigate the effect of different orderings of the grid points on the performance of some stationary iterative methods, multigrid method, and preconditioned GMRES. Three sets of numerical experiments are conducted to study the convergence behaviors of these iterative methods under the influence of the flow directions, the orderings of the grid points, and the magnitude of the convection coefficients.

اللغة الأصليةEnglish
الصفحات (من إلى)457-479
عدد الصفحات23
دوريةComputers and Mathematics with Applications
مستوى الصوت44
رقم الإصدار3-4
المعرِّفات الرقمية للأشياء
حالة النشرPublished - أغسطس 2002
منشور خارجيًانعم

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2611???
  • ???subjectarea.asjc.1700.1703???
  • ???subjectarea.asjc.2600.2605???

بصمة

أدرس بدقة موضوعات البحث “Convergence and performance of iterative methods for solving variable coefficient convection-diffusion equation with a fourth-order compact difference scheme'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا