Contrast enhancement using brightness preserving histogram equalization technique for classification of date varieties

G. Thomas, A. Manickavasagan*, L. Khriji, R. Al-Yahyai

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

3 اقتباسات (Scopus)

ملخص

Computer vision technique is becoming popular for quality assessment of many products in food industries. Image enhancement is the first step in analyzing the images in order to obtain detailed information for the determination of quality. In this study, Brightness preserving histogram equalization technique was used to enhance the features of gray scale images to classify three date varieties (Khalas, Fard and Madina). Mean, entropy, kurtosis and skewness features were extracted from the original and enhanced images. Mean and entropy from original images and kurtosis from the enhanced images were selected based on Lukka's feature selection approach. An overall classification efficiency of 93.72% was achieved with just three features. Brightness preserving histogram equalization technique has great potential to improve the classification in various quality attributes of food and agricultural products with minimum features.

اللغة الأصليةEnglish
الصفحات (من إلى)55-63
عدد الصفحات9
دوريةJournal of Engineering Research
مستوى الصوت11
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرPublished - 2014

ASJC Scopus subject areas

  • ???subjectarea.asjc.2200???

بصمة

أدرس بدقة موضوعات البحث “Contrast enhancement using brightness preserving histogram equalization technique for classification of date varieties'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا