ملخص
Let E be a real Banach space with norm k-k and let fxngn, 0 be a generalized nonexpansive sequence in E (i.e. formula ommited where the series of nonnegative terms formula ommited is convergent). Let K = formula ommited We deal with the mean point of formula ommited concerning a Banach limit μ. If E is reflexive and d = d(0; K), then we show that formula ommited and there exists a pointformula ommited. In the sequel, this result is applied to obtain the weak and strong convergence of formula ommited.
اللغة الأصلية | English |
---|---|
الصفحات (من إلى) | 539-548 |
عدد الصفحات | 10 |
دورية | Georgian Mathematical Journal |
مستوى الصوت | 11 |
رقم الإصدار | 3 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | Published - يناير 2004 |
ASJC Scopus subject areas
- ???subjectarea.asjc.2600???