Algorithms for automatic torus motor parameters identification: Comparative study

Abdullah Al-Badi*, Adel Gastli, Joseph A. Jervase

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

1 اقتباس (Scopus)

ملخص

Purpose - The parameters of axial-field machines are very small compared with the parameters of conventional machines. Different measuring methods are normally used in order to obtain good estimates of the machine parameters. These methods are difficult to perform, costly and time consuming. This paper proposes the use of genetic algorithms to predict the self and mutual inductances of a specific type of axial-field machine, the Torus motor. Design/methodology/approach - The parameter extraction is reformulated as a search and optimization problem in which the only requirement is a set of values of current versus time and an approximate estimate of the parameters. Findings - The predicted machine self and mutual inductances are verified by comparing with several measuring methods and excellent agreement is obtained. Originality/value - Demonstrates that genetic algorithms can predict the self and mutual inductances of the Torus machine automatically with high accuracy.

اللغة الأصليةEnglish
الصفحات (من إلى)1299-1310
عدد الصفحات12
دوريةCOMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
مستوى الصوت24
رقم الإصدار4
المعرِّفات الرقمية للأشياء
حالة النشرPublished - 2005

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1706???
  • ???subjectarea.asjc.1700.1703???
  • ???subjectarea.asjc.2200.2208???
  • ???subjectarea.asjc.2600.2604???

بصمة

أدرس بدقة موضوعات البحث “Algorithms for automatic torus motor parameters identification: Comparative study'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا