Adaptive and predictive control of liquid-liquid extractors using neural-based instantaneous linearization technique

Farouq S. Mjalli*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

4 اقتباسات (Scopus)

ملخص

Nonlinearity of the extraction process is addressed via the application of instantaneous linearization to control the extract and raffinate concentrations. Two feed-forward neural networks with delayed inputs and outputs were trained and validated to capture the dynamics of the extraction process. These nonlinear models were then adopted in an instantaneous linearization algorithm into two control algorithms. The self-tuning adaptive control strategy was compared to an approximate model predictive control in terms of set point tracking capability, efficiency and stability. For the case of large, abrupt set point changes, the performance of the self-tuning algorithm was poor, especially for the raffinate control. The approximate model predictive control strategy was superior to the self-tuning control in terms of its ability to force the output to following the set point trajectory efficiently with smooth controller moves.

اللغة الأصليةEnglish
الصفحات (من إلى)539-549
عدد الصفحات11
دوريةChemical Engineering and Technology
مستوى الصوت29
رقم الإصدار5
المعرِّفات الرقمية للأشياء
حالة النشرPublished - مايو 2006
منشور خارجيًانعم

ASJC Scopus subject areas

  • ???subjectarea.asjc.1600???
  • ???subjectarea.asjc.1500???
  • ???subjectarea.asjc.2200.2209???

بصمة

أدرس بدقة موضوعات البحث “Adaptive and predictive control of liquid-liquid extractors using neural-based instantaneous linearization technique'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا