A priori error estimates for finite volume element approximations to second order linear hyperbolic integro-differential equations

Samir Karaa, Amiya K. Pani

نتاج البحث: المساهمة في مجلةمراجعة النظراء

1 اقتباس (Scopus)

ملخص

In this paper, both semidiscrete and completely discrete finite volume element methods (FVEMs) are analyzed for approximating solutions of a class of linear hyperbolic integro-differential equations in a two-dimensional convex polygonal domain. The effect of numerical quadrature is also examined. In the semidiscrete case, optimal error estimates in L(L2) and L(H1) norms are shown to hold with minimal regularity assumptions on the initial data, whereas quasi-optimal estimate is derived in L(L) norm under higher regularity on the data. Based on a second order explicit method in time, a completely discrete scheme is examined and optimal error estimates are established with a mild condition on the space and time discretizing parameters. Finally, some numerical experiments are conducted which confirm the theoretical order of convergence.

اللغة الأصليةEnglish
الصفحات (من إلى)401-429
عدد الصفحات29
دوريةInternational Journal of Numerical Analysis and Modeling
مستوى الصوت12
رقم الإصدار3
حالة النشرPublished - 2015

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2612???

بصمة

أدرس بدقة موضوعات البحث “A priori error estimates for finite volume element approximations to second order linear hyperbolic integro-differential equations'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا