ملخص
A novel and robust non-invasive method for identification of patients with obstructive sleep apnea (OSA) is introduced in this paper. Most sleep clinics suffer from the large number of patients with snoring who think that they have OSA and needs full overnight polysomnography. Thus, a need for simple non-invasive methods is of great importance to screen this large number of patients before the polysomnography. The method used in this paper depends on the continuous-wavelet transform and to be considered one of the methods with high-identification efficiency. A clear advantage of this method is its consistency with changing the wavelet-filter type. The data used in this paper are downloaded from MIT data bases. 60 subjects (40 OSA and 20 normal) are to be divided equally for both training and testing cycles.
اللغة الأصلية | English |
---|---|
عنوان منشور المضيف | ISCAIE 2017 - 2017 IEEE Symposium on Computer Applications and Industrial Electronics |
ناشر | Institute of Electrical and Electronics Engineers Inc. |
الصفحات | 22-27 |
عدد الصفحات | 6 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781509047529 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | Published - أكتوبر 18 2017 |
الحدث | 2017 IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE 2017 - Langkawi Island, Malaysia المدة: أبريل ٢٤ ٢٠١٧ → أبريل ٢٥ ٢٠١٧ |
Other
Other | 2017 IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE 2017 |
---|---|
الدولة/الإقليم | Malaysia |
المدينة | Langkawi Island |
المدة | ٤/٢٤/١٧ → ٤/٢٥/١٧ |
ASJC Scopus subject areas
- ???subjectarea.asjc.3100.3105???
- ???subjectarea.asjc.1700.1706???
- ???subjectarea.asjc.2200.2208???
- ???subjectarea.asjc.2200.2209???