A new characterization of periodic oscillations in periodic difference equations

Ahmad Al-Salman, Ziyad Alsharawi*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمراجعة النظراء

7 اقتباسات (Scopus)

ملخص

In this paper, we characterize periodic solutions of p-periodic difference equations. We classify the periods into multiples of p and nonmultiples of p. We show that the elements of the set of multiples of p follow the well-known Sharkovsky's ordering multiplied by p. On the other hand, we show that the elements of the set Γp of nonmultiples of p are independent in their existence. Moreover, we show the existence of a p-periodic difference equation with infinite Γp-set in which the maps are defined on a compact domain and agree exactly on a countable set. Based on the proposed classification, we give a refinement of Sharkovsky's theorem for periodic difference equations.

اللغة الأصليةEnglish
الصفحات (من إلى)921-928
عدد الصفحات8
دوريةChaos, Solitons and Fractals
مستوى الصوت44
رقم الإصدار11
المعرِّفات الرقمية للأشياء
حالة النشرPublished - نوفمبر 2011

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3109???
  • ???subjectarea.asjc.2600???
  • ???subjectarea.asjc.3100???
  • ???subjectarea.asjc.2600.2604???

بصمة

أدرس بدقة موضوعات البحث “A new characterization of periodic oscillations in periodic difference equations'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا